Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Vascular endothelial growth factor (VEGF) signaling is crucial for lung structure maintenance. Although VEGF deficiency plays a role in the pathogenesis of emphysema in animals, little is known about VEGF expression levels and functions, as well as VEGF receptors, in airway epithelial cells, which are in direct contact with the environment. In this study, C57BL/6J mice were exposed to cigarette smoke (CS) for short (approximately 10 days) and long (4-24 wk) time periods, and bronchiolar expressions of VEGF and its receptors VEGFR-1 and VEGFR-2 were examined. The relationships between the expressions of VEGF, VEGFR-1, and VEGFR-2 and smoking histories and/or chronic obstructive pulmonary disease (COPD) were examined in humans. The mRNA levels were quantified in bronchiolar epithelium harvested by laser capture microdissection in both mouse and human lung tissues or in human bronchial epithelium harvested by bronchoscopic brushing. The VEGF protein level was assessed by immunohistochemistry or enzyme-linked immunosorbent assay. Repeated CS exposure downregulated bronchiolar expressions of VEGF and both VEGF receptors at various time points prior to the development of emphysema. In humans, bronchiolar VEGF was significantly decreased in smokers with COPD compared to lifelong nonsmokers, as well as to smokers without COPD; however, there was no difference in bronchiolar VEGF levels between lifelong nonsmokers and smokers without COPD. On the other hand, bronchiolar VEGFR-2 was downregulated in smokers with and without COPD compared to lifelong nonsmokers. These findings suggest the association of downregulation of bronchiolar VEGF and its receptors with cigarette smoking and COPD.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1080/08958370701866412 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!