The decision to elongate or terminate the RNA chain at specific DNA template positions during transcription is kinetically regulated, but the methods used to measure the rates of these processes have not been sufficiently quantitative to permit detailed mechanistic analysis of the steps involved. Here, we use surface plasmon resonance (SPR) technology to monitor RNA transcription by Escherichia coli RNA polymerase (RNAP) in solution and in real time. We show that binding of RNAP to immobilized DNA templates to form active initiation or elongation complexes can be resolved and monitored by this method, and that changes during transcription that involve the gain or loss of bound mass, including the release of the sigma factor during the initiation-elongation transition, the synthesis of the RNA transcript, and the release of core RNAP and nascent RNA at intrinsic terminators, can all be observed. The SPR method also permits the discrimination of released termination products from paused and other intermediate complexes at terminators. We have used this approach to show that the rate constant for transcript release at intrinsic terminators tR2 and tR' is approximately 2-3 s(-1) and that the extent of release at these terminators is consistent with known termination efficiencies. Simulation techniques have been used to fit the measured parameters to a simple kinetic model of transcription and the implications of these results for transcriptional regulation are discussed.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2265150 | PMC |
http://dx.doi.org/10.1073/pnas.0712074105 | DOI Listing |
Front Biosci (Landmark Ed)
January 2025
Department of Pathology, Faculty of Medicine, School of Health Sciences, University of Thessaly, 41500 Larissa, Greece.
Background: Hypoxia-inducible factor 1 alpha (HIF-1α) and its related vascular endothelial growth factor (VEGF) may play a significant role in atherosclerosis and their targeting is a strategic approach that may affect multiple pathways influencing disease progression. This study aimed to perform a systematic review to reveal current evidence on the role of HIF-1α and VEGF immunophenotypes with other prognostic markers as potential biomarkers of atherosclerosis prognosis and treatment efficacy.
Methods: We performed a systematic review of the current literature to explore the role of HIF-1α and VEGF protein expression along with the relation to the prognosis and therapeutic strategies of atherosclerosis.
Front Biosci (Landmark Ed)
January 2025
Department of Cardiology, The First Affiliated Hospital of Guangxi Medical University, 530021 Nanning, Guangxi, China.
Background: Rheumatic heart disease (RHD), which is caused mainly by Group A Streptococcus, leads to fibrotic damage to heart valves. Recently, endothelial‒mesenchymal transition (EndMT), in which activin plays an important role, has been shown to be an important factor in RHD valvular injury. However, the mechanism of activin activity and EndMT in RHD valvular injury is not clear.
View Article and Find Full Text PDFFront Biosci (Landmark Ed)
January 2025
Department of Chemoradiotherapy, Ningbo No 2 Hospital, 315000 Ningbo, Zhejiang, China.
Background: Breast cancer stem cells (BCSCs) are instrumental in treatment resistance, recurrence, and metastasis. The development of breast cancer and radiation sensitivity is intimately pertinent to long non-coding RNA (lncRNA). This work is formulated to investigate how the lncRNA affects the stemness and radioresistance of BCSCs.
View Article and Find Full Text PDFViruses
January 2025
Center for Retrovirus Research, Department of Veterinary Biosciences, The Ohio State University, Columbus, OH 43210, USA.
Since the discovery of RNA in the early 1900s, scientific understanding of RNA form and function has evolved beyond protein coding. Viruses, particularly retroviruses like human T-cell leukemia virus type 1 (HTLV-1), rely heavily on RNA and RNA post-transcriptional modifications to regulate the viral lifecycle, pathogenesis, and evasion of host immune responses. With the emergence of new sequencing technologies in the last decade, our ability to dissect the intricacies of RNA has flourished.
View Article and Find Full Text PDFViruses
January 2025
Department of Medicine, Penn State College of Medicine, 500 University Drive, Hershey, PA 17033, USA.
Retroviral genome selection and virion assembly remain promising targets for novel therapeutic intervention. Recent studies have demonstrated that the Gag proteins of Rous sarcoma virus (RSV) and human immunodeficiency virus type-1 (HIV-1) undergo nuclear trafficking, colocalize with nascent genomic viral RNA (gRNA) at transcription sites, may interact with host transcription factors, and display biophysical properties characteristic of biomolecular condensates. In the present work, we utilized a controlled in vitro condensate assay and advanced imaging approaches to investigate the effects of interactions between RSV Gag condensates and viral and nonviral RNAs on condensate abundance and organization.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!