The influence of neuroinflammation on glutamate uptake by glial cells was examined after exposing primary cultures of rat astrocytes to conditioned culture medium from lipopolysaccharide-activated microglia. While such treatment triggered an inflammatory response in astrocytes, as revealed by the induction of cytokine expression, a significant decrease in GLAST expression and activity was observed after 72 h. This regulation of glutamate transporter was not observed with medium from naive microglia, but was mimicked by direct addition of tumor necrosis factor-alpha (TNF-alpha), a major cytokine released from activated microglia. Hence, on its own, TNF-alpha also triggered inflammation in astrocyte cultures, highlighting complex cross-talk between astrocytes and microglia in inflammatory conditions. This putatively detrimental regulation of GLAST in response to inflammation was also studied in cells exposed to dibutyryl cAMP, recognized as a model of astrocytes exhibiting a typical differentiated or activated phenotype. In this model, the conditioned culture medium from activated microglia, as well as TNF-alpha, were found to increase glutamate uptake capacity. Consistently, both of these treatments caused only modest induction of an inflammatory response in dibutyryl cAMP-matured astrocytes as compared to undifferentiated astrocytes. Together, these results suggest that differentiated/activated astrocytes are endowed with the capacity to confront inflammatory insults and that drugs influencing the astrocytes phenotype would deserve further consideration in the treatment of neurological disorders.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/j.1471-4159.2008.05305.x | DOI Listing |
BMC Med Imaging
January 2025
Department of Urology, The First Hospital of Shanxi Medical University, Taiyuan, 030000, China.
Background: PSMA PET/CT emerges as a pivotal technology in the diagnostic landscape of prostate cancer (PCa). It offers a suite of imaging interpretation criteria, notably the maximum standardized uptake value (SUVmax), the molecular imaging prostate-specific membrane antigen score (miPSMA score), and the PSMA reporting and data system (PSMA-RADS). Identifying the most valuable criteria for diagnosing PCa and standardizing imaging interpretation across various tracers is an unresolved question.
View Article and Find Full Text PDFImmunology
January 2025
Department of Respiratory and Critical Care Medicine, Longyan First Affiliated Hospital of Fujian Medical University, Longyan, China.
Tumour cell immune infiltration is linked to spindle pole component 25 (SPC25). The purpose of this work was to examine the function and molecular mechanism of SPC25 in immune escape in lung adenocarcinoma (LUAD). SPC25 expression in LUAD was examined using The Cancer Genome Atlas (TCGA) database, and RT-qPCR was used to confirm the results.
View Article and Find Full Text PDFBioconjug Chem
January 2025
School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026, China.
Positron-emission tomography (PET) offers high sensitivity for cancer diagnosis. However, small-molecule-based probes often exhibit insufficient accumulation in tumor sites, while nanoparticle-based agents typically have limited delivery efficiency. To address this challenge, this study proposes a novel PET imaging probe, Ga-CBT-PSMA, designed for prostate cancer.
View Article and Find Full Text PDFCancer Imaging
January 2025
Department of Surgery, Amsterdam UMC Location Vrije Universiteit Amsterdam, De Boelelaan 1117, Amsterdam, the Netherlands.
Background: Current diagnostic imaging modalities have limited ability to differentiate between malignant and benign pancreaticobiliary disease, and lack accuracy in detecting lymph node metastases. F-Prostate-Specific Membrane Antigen (PSMA) PET/CT is an imaging modality used for staging of prostate cancer, but has incidentally also identified PSMA-avid pancreatic lesions, histologically characterized as pancreatic ductal adenocarcinoma (PDAC). This phase I/II study aimed to assess the feasibility of F-PSMA PET/CT to detect PDAC.
View Article and Find Full Text PDFJ Cell Physiol
January 2025
Department of Pharmaceutical Sciences and Center for Blood-Brain Barrier Research, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, Texas, USA.
Glucose is a major source of energy for the brain. At the blood-brain barrier (BBB), glucose uptake is facilitated by glucose transporter 1 (GLUT1). GLUT1 Deficiency Syndrome (GLUT1DS), a haploinsufficiency affecting SLC2A1, reduces glucose brain uptake.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!