Overproduction of noncanonical amino acids norvaline and norleucine by Escherichia coli with inactivated acetohydroxy acid synthases was demonstrated. The cultivation conditions for the overproduction of noncanonical amino acids were studied. The effect of the restoration of acetohydroxy acid synthase activity, increased expression of the leuABCD operon, and inactivation of the biosynthetic threonine deaminase on norvaline and norleucine synthesis was studied. When grown under valine limitation, E. coli cells with inactivated acetohydroxy acid synthases and an elevated level of expression of the valine operon were shown to accumulate norvaline and norleucine (up to 0.8 and 4 g/l, respectively). These results confirm the existing hypothesis of norvaline and norleucine formation from 2-ketobutyrate by leucine biosynthesis enzymes.

Download full-text PDF

Source

Publication Analysis

Top Keywords

norvaline norleucine
16
noncanonical amino
12
amino acids
12
acetohydroxy acid
12
escherichia coli
8
overproduction noncanonical
8
inactivated acetohydroxy
8
acid synthases
8
[overproduction noncanonical
4
acids escherichia
4

Similar Publications

Application of reductive amination by heterologously expressed Thermomicrobium roseumL-alanine dehydrogenase to synthesize L-alanine derivatives.

Enzyme Microb Technol

September 2023

Department of Bioengineering, Gebze Technical University, Gebze, 41400 Kocaeli, Turkey; BAUZYME Biotechnology Co., Gebze Technical University Technopark, Gebze, 41400 Kocaeli, Turkey. Electronic address:

Unnatural amino acids are unique building blocks in modern medicinal chemistry as they contain an amino and a carboxylic acid functional group, and a variable side chain. Synthesis of pure unnatural amino acids can be made through chemical modification of natural amino acids or by employing enzymes that can lead to novel molecules used in the manufacture of various pharmaceuticals. The NAD+ -dependent alanine dehydrogenase (AlaDH) enzyme catalyzes the conversion of pyruvate to L-alanine by transferring ammonium in a reversible reductive amination activity.

View Article and Find Full Text PDF

We report the synthesis of carbazole-based unnatural α-amino acid and non-α-amino acid derivatives a Pd(II)-catalyzed bidentate directing group 8-aminoquinoline-aided β-C(sp)-H activation/functionalization method. Various -phthaloyl, DL-, L- and D-carboxamides derived from their corresponding α-amino acids, non-α-amino acids and aliphatic carboxamides were subjected to the β-C(sp)-H functionalization with 3-iodocarbazoles in the presence of a Pd(II) catalyst to afford the corresponding carbazole moiety installed unnatural amino acid derivatives and aliphatic carboxamides. Carbazole motif-containing racemic (DL) and enantiopure (L and D) amino acid derivatives including phenylalanine, norvaline, leucine, norleucine and 2-aminooctanoic acid with -stereochemistry and various non-α-amino acid derivatives including GABA have been synthesized.

View Article and Find Full Text PDF

The uncontrolled incorporation of non-canonical branched chain amino acids (ncBCAAs) such as norleucine, norvaline and β-methylnorleucine into recombinant proteins in E. coli production processes is a crucial problem in the pharmaceutical industry, since it can lead to the production of altered proteins with non-optimal characteristics. Despite various solutions, to date there are no engineered strains that exhibit a reduced accumulation of these ncBAAs.

View Article and Find Full Text PDF

Insufficient mixing in large-scale bioreactors provokes gradient zones of substrate, dissolved oxygen (DO), pH, and other parameters. responds to a high glucose, low oxygen feeding zone with the accumulation of mixed acid fermentation products, especially formate, but also with the synthesis of non-canonical amino acids, such as norvaline, norleucine and β-methylnorleucine. These amino acids can be mis-incorporated into recombinant products, which causes a problem for pharmaceutical production whose solution is not trivial.

View Article and Find Full Text PDF

The literature data on solubilities and water-solvent partition coefficients have been used to obtain properties or "Absolv descriptors" for zwitterionic α-aminoacids: glycine, α-alanine (α-aminopropanoic acid), α-aminobutanoic acid, norvaline (α-aminopentanoic acid), norleucine (α-aminohexanoic acid), valine (α-amino-3-methylbutanoic acid), leucine (α-amino-4-methylpentanoic acid), and α-phenylalanine. Together with equations that we have previously constructed, these descriptors can be used to estimate further solubilities and partition coefficients in a variety of organic solvents and in water-methanol and water-ethanol mixtures. It is shown that equations for neutral solutes are inadequate for the description of solubilities and partition coefficients for these α-aminoacids, and our equations developed for use with both neutral and ionic solutes must be used.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!