The passage of highly specialized germ cells to future generations is essential for the maintenance of species. To date, conventional genetic screens identified relatively few genes that are involved in germ cell development. We aimed to identify germ line specific genes on the X chromosome of Drosophila melanogaster by the application of a new method: the dual-tagging gene-trap system (GT). A modified version of the gene-trap element was used in our experiments and the resulting insertional mutants were screened for grandchild-less phenotype with the help of the attached-X system and a sensitized genetic background developed in our laboratory. Among the 800 insertions mapped to the X chromosome 33 new mutations were identified that exhibited grandchild-less phenotype, 6 gave visible phenotype and 12 were conditional lethal. The cloning of a selected group of the 33 lines showing grandchild-less phenotype confirmed that we have identified new candidates for genes involved in germ cell development. One of them named pebbled (peb) is discussed in details in this paper. Finally, we also describe a novel automatic selection system developed in our laboratory which enables the extension of the GT mutagenesis to the autosomes.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1556/ABiol.58.2007.Suppl.7 | DOI Listing |
Cerebral beta-amyloid accumulation is the key initiator of Alzheimer's disease (AD) pathology. Most familial early-onset AD mutations in the APP, PSEN1/2 genes increase the ratio of Abeta42:Abeta40, which drives beta-amyloid accumulation in the brain. In 2001, the late Steve Wagner, Maria Kounnas, and I directed an agnostic high-throughput screen for compounds that would reverse the Abeta42:Abeta40, ratio, and discovered the first non-NSAID (second generation) gamma secretase modulators (GSM) at TorreyPines Therapeutics.
View Article and Find Full Text PDFJ Diabetes Sci Technol
January 2025
Department of Medicine, The University of Chicago, Chicago, IL, USA.
Monogenic diabetes mellitus (MDM) is a group of relatively rare disorders caused by pathogenic variants in key genes that result in hyperglycemia. Lack of identified cases, along with absent data standards, and limited collaboration across institutions have hindered research progress. To address this, the UChicago Monogenic Diabetes Registry (UCMDMR) and UChicago Data for the Common Good (D4CG) created a national consortium of MDM research institutions called the PREcision DIabetes ConsorTium (PREDICT).
View Article and Find Full Text PDFNAR Genom Bioinform
March 2025
Department of Molecular Genetics, Groningen, Biomolecular Sciences and Biotechnology Institute, University of Groningen, Nijenborgh 7, 9747 AG Groningen, the Netherlands.
σ serves as an unconventional sigma factor with a distinct mechanism of transcription initiation, which depends on the involvement of a transcription activator. This unique sigma factor σ is indispensable for orchestrating the transcription of genes crucial to nitrogen regulation, flagella biosynthesis, motility, chemotaxis and various other essential cellular processes. Currently, no comprehensive tools are available to determine σ promoters and regulon in bacterial genomes.
View Article and Find Full Text PDFJ Cancer
January 2025
Department of Urology, College of Medicine and Shu-Tien Urological Research Center, National Yang Ming Chiao Tung University, Taipei 112, Taiwan.
Biochemical recurrence (BCR) is a critical concern in prostate cancer management; however, its underlying genetic determinants remain poorly understood. The () gene family is involved in cellular detoxification and biosynthetic processes and has been implicated in various cancers. This study investigated the association between the family members and prostate cancer recurrence.
View Article and Find Full Text PDFJ Cancer
January 2025
Department of Medical Oncology, The Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong 510180, China.
The pathogenesis of metabolic dysfunction-associated steatotic liver disease-associated hepatocellular carcinoma (MASLD-HCC) is complex and exhibits sex-specific differences. Effective methods for monitoring MASLD progression to HCC are lacking. Transcriptomic data from liver tissue samples sourced from multiple public databases were integrated.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!