Atomic force microscopy is a technique capable to study biological recognition processes at the single-molecule level. In this work we operate the AFM in a force-scan based mode, the jumping mode, where simultaneous topographic and tip-sample adhesion maps are acquired. This approach obtains the unbinding force between a well-defined receptor molecule and a ligand attached to the AFM tip. The method is applied to the avidin-biotin system. In contrast with previous data, we obtain laterally resolved adhesion maps of avidin-biotin unbinding forces highly correlated with single avidin molecules in the corresponding topographic map. The scanning rate 250 pixel s(-1) (2 min for a 128 x 128 image) is limited by the hydrodynamic drag force. We are able to build a rupture-force distribution histogram that corresponds to a single defined molecule. Furthermore, we find that due to the motility of the polymer used as spacer to anchor the ligand to the tip, its direction at rupture does not generally coincide with the normal to the tip-sample, this introduces an appreciable error in the measured force.

Download full-text PDF

Source
http://dx.doi.org/10.1002/cphc.200700597DOI Listing

Publication Analysis

Top Keywords

atomic force
8
force microscopy
8
adhesion maps
8
force
6
unbinding molecular
4
molecular recognition
4
recognition force
4
force maps
4
maps localized
4
localized single
4

Similar Publications

Matrix-bound vesicles (MBVs), an integral part of the extracellular matrix (ECM), are emerging as pivotal factors in ECM-driven molecular signaling. This study is the first to report the isolation of MBVs from porcine arterial endothelial cell basement membranes (A-MBVs) and thyroid cartilage (C-MBVs), the latter serving as a negative control due to its minimal vascular characteristics. Using Transmission Electron Microscopy (TEM), Nano-Tracking Analysis (NTA), Electrochemical Impedance Spectroscopy (EIS), and Atomic Force Microscopy (AFM), we orthogonally characterized the isolated MBVs.

View Article and Find Full Text PDF

Recently, researchers have used silver nanoparticles (AgNPs) coupled with humic acid (HA) as antimicrobial agents. Herein, AgNPs were prepared and coupled with humic acid for their antimicrobial activities. The as-prepared AgNPs coupled with humic acid (HA) were characterized by an atomic force microscope (AFM), X-ray powder diffraction (XRD), zeta potential, zeta sizer, Fourier-transform infrared (FT-IR) spectroscopy, and UV-VIS spectrophotometer.

View Article and Find Full Text PDF

Phase transition and superconductivity of selenium under pressure.

Phys Chem Chem Phys

January 2025

Institute of Atomic and Molecular Physics, Sichuan University, Chengdu 610065, China.

Although a substantial amount of research has been conducted to unravel the structural configurations of selenium under pressure, the exquisite sensitivity of selenium's p-orbital electrons to this external force, leading to a plethora of structural variations, leaves several intermediary phases still shrouded in mystery. We, herein, systematically identify the structural and electronic transformations of selenium under high pressure up to 300 GPa, employing crystal structure prediction in conjunction with first-principles calculations. Our results for the transition sequence (321 → 2/ → 3̄ → 3̄) of selenium are in good agreement with experimental ones.

View Article and Find Full Text PDF

Liquid biopsies are expected to advance cancer management, and particularly physical cues are gaining attention for indicating tumorigenesis and metastasis. Atomic force microscopy (AFM) has become a standard and important tool for detecting the mechanical properties of single living cells, but studies of developing AFM-based methods to efficiently measure the mechanical properties of circulating tumor cells (CTCs) in liquid biopsy for clinical utility are still scarce. Herein, we present a proof-of-concept study based on the complementary combination of AFM and microfluidics, which allows label-free sorting of individual CTCs and subsequent automated AFM measurements of the mechanical properties of CTCs.

View Article and Find Full Text PDF

Refinement of Atomic Polarizabilities for a Polarizable Gaussian Multipole Force Field with Simultaneous Considerations of Both Molecular Polarizability Tensors and In-Solution Electrostatic Potentials.

J Chem Inf Model

January 2025

Departments of Molecular Biology and Biochemistry, Chemical and Biomolecular Engineering, Materials Science and Engineering, and Biomedical Engineering, University of California, Irvine, Irvine, California 92697, United States.

Atomic polarizabilities are considered to be fundamental parameters in polarizable molecular mechanical force fields that play pivotal roles in determining model transferability across different electrostatic environments. In an earlier work, the atomic polarizabilities were obtained by fitting them to the B3LYP/aug-cc-pvtz molecular polarizability tensors of mainly small molecules. Taking advantage of the recent PCMRESPPOL method, we refine the atomic polarizabilities for condensed-phase simulations using a polarizable Gaussian Multipole (pGM) force field.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!