AI Article Synopsis

Article Abstract

A series of three novel ZnPc-C60 conjugates (Pc=phthalocyanine) 1 a-c bearing different spacers (single, double, and triple bond) between the two electroactive moieties was synthesized and compared to that of ZnPc-C60 conjugate 2, in which the two electroactive moieties are linked directly. The synthetic strategy- towards the preparation of 1 a-c- involved palladium-catalyzed cross-coupling reactions over a monoiodophthalocyanine precursor 4 to introduce the corresponding spacer, and subsequent dipolar cycloaddition reaction to C60. Detailed photophysical investigations of 1 a-c and 2 prompted an intramolecular electron transfer that evolves from the photoexcited ZnPc to the electron-accepting C60. In particular, with the help of femtosecond laser photolysis charge separation was indeed confirmed as the major deactivation channel. Complementary time-dependent density functional calculations supported the spectral assignment, namely, the spectral identity of the ZnPc(*+) radical cation and the C60 (*-) radical anion as seen in the differential absorption spectra. The lifetimes of the correspondingly formed radical ion-pair states depend markedly on the solvent polarity: they increase as polarity decreases. Similarly, although to a lesser extent, the nature of the linker impacts the lifetime of the radical ion-pair states. In general, the lifetimes of these states tend to be shortest in the system that lacks any spacer at all (2), whereas the longest lifetimes were found in the system that carries the triple-bond spacer (1 a).

Download full-text PDF

Source
http://dx.doi.org/10.1002/chem.200701700DOI Listing

Publication Analysis

Top Keywords

electroactive moieties
8
radical ion-pair
8
ion-pair states
8
synthesis photoinduced
4
photoinduced electron-transfer
4
electron-transfer properties
4
properties phthalocyanine-[60]fullerene
4
phthalocyanine-[60]fullerene conjugates
4
conjugates series
4
series three
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!