Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
This paper presents Q-band electron spin resonance (ESR) studies on free radicals (FR) generated in potato leaves exposed to different O(3) levels in open-top chambers (OTC), together with a quantitative study of the relationship between FR signal intensity and area of potato leaf damage. The advantages of Q-band when compared to X-band ESR spectroscopy are analysed, the main advantage being an absence of overlapping between Mn(II) and FR signals, allowing a quantitative study of FR signal intensity. This study also reports on a graphical method developed to quantitatively measure the damaged area on leaves caused by ozone exposure. Results indicate a direct relationship between FR signal intensity (measured as area under the signal) and percentage of O(3) damage and clearly demonstrate a close relationship between visible ozone-induced symptoms and permanent FR concentration in potato leaves.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1080/10715760701834537 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!