Electrical stimulation is commonly used for strengthening muscle but little evidence exists as to the optimal electrode size, waveform, or frequency to apply. Three male and three female subjects (22-40 years old) were examined during electrical stimulation of the quadriceps muscle. Two self adhesive electrode sizes were examined, 2 cm x 2 cm and 2 cm x 4 cm. Electrical stimulation was applied with square and sine waveforms, currents of 5, 10 and 15 mA, and pulse widths of 100-500 micros above the quadriceps muscle. Frequencies of stimulation were 20, 30, and 50 Hz. Current on the skin above the quadriceps muscle was measured with surface electrodes at five positions and at three positions with needle electrodes in the same muscle. Altering pulse width in the range of 100-500 micros, the frequency over a range of 20-50 Hz, or current from 5 to 15 mA had no effect on current dispersion either in the skin or within muscle. In contrast, the distance separating the electrodes caused large changes in current dispersion on the skin or into muscle. The most significant finding in the present investigation was that, while on the surface of the skin current dispersion was not different between sine and square wave stimulation, significantly more current was transferred deep in the muscle with sine versus square wave stimulation. The use of sine wave stimulation with electrode separation distances of less then 15 cm is recommended for electrical stimulation with a sine wave to achieve deep muscle stimulation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00421-008-0700-3 | DOI Listing |
PLoS One
January 2025
Klab4Recovery Research Program, The City University of New York, Staten Island, New York, United States of America.
Recruitment input-output curves of transspinal evoked potentials that represent the net output of spinal neuronal networks during which cortical, spinal and peripheral inputs are integrated as well as motor evoked potentials and H-reflexes are used extensively in research as neurophysiological biomarkers to establish physiological or pathological motor behavior and post-treatment recovery. A comparison between different sigmoidal models to fit the transspinal evoked potentials recruitment curve and estimate the parameters of physiological importance has not been performed. This study sought to address this gap by fitting eight sigmoidal models (Boltzmann, Hill, Log-Logistic, Log-Normal, Weibull-1, Weibull-2, Gompertz, Extreme Value Function) to the transspinal evoked potentials recruitment curves of soleus and tibialis anterior recorded under four different cathodal stimulation settings.
View Article and Find Full Text PDFUrogynecology (Phila)
February 2025
From the Departments of Gynecology and Obstetrics.
Importance: Patients deciding between advanced therapies for overactive bladder syndrome may be interested to know the likelihood of treatment crossover after sacral neuromodulation, intradetrusor OnabotulinumtoxinA, or percutaneous tibial nerve stimulation. Treatment crossover was defined as a switch from one advanced therapy to another.
Objectives: The aim of this study was to estimate the rate of treatment crossover after each advanced therapy for nonneurogenic overactive bladder syndrome.
Periodontol 2000
January 2025
ADA Forsyth Institute, Cambridge, Massachusetts, USA.
Tooth movement is a complex process involving the vascularization of the tissues, remodeling of the bone cells, and periodontal ligament fibroblasts under the hormonal and neuronal regulation mechanisms in response to mechanical force application. Therefore, it will inevitably impact periodontal tissues. Prolonged treatment can lead to adverse effects on teeth and periodontal tissues, prompting the development of various methods to reduce the length of orthodontic treatment.
View Article and Find Full Text PDFFood Sci Anim Resour
January 2025
Institutes of Green Bio Science & Technology, Seoul National University, Pyeongchang 25354, Korea.
The quality grade of cow meat is often lower than that of steer meat, resulting in economic losses and reduced consumer satisfaction. This review explores various strategies for improving the quality of cow meat, with a focus on slaughter and post-slaughter practices. Certain slaughter methods, including electrical stimulation and suspension techniques, have been shown to improve meat tenderness by alleviating rigor mortis and inducing an increase in sarcomere length.
View Article and Find Full Text PDFFront Bioeng Biotechnol
January 2025
Institute of Electronics, Computer and Telecommunication Engineering (IEIIT), National Research Council (CNR), Milan, Italy.
Minimally invasive medical treatments for peripheral nerve stimulation are critically needed to minimize surgical risks, enhance the precision of therapeutic interventions, and reduce patient recovery time. Magnetoelectric nanoparticles (MENPs), known for their unique ability to respond to both magnetic and electric fields, offer promising potential for precision medicine due to their dual tunable functionality. In this study a multi-physics modeling of the MENPs was performed, assessing their capability to be targeted through external magnetic fields and become electrically activated.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!