Maintaining cell shape and tone is crucial for the function and survival of cells and tissues. Mechanotransduction relies on the transformation of minuscule mechanical forces into high-fidelity electrical responses. When mechanoreceptors are stimulated, mechanically sensitive cation channels open and produce an inward transduction current that depolarizes the cell. For this process to operate effectively, the transduction machinery has to retain integrity and remain unfailingly independent of environmental changes. This is particularly challenging for poikilothermic organisms, where changes in temperature in the environment may impact the function of mechanoreceptor neurons. Thus, we wondered how insects whose habitat might quickly vary over several tens of degrees of temperature manage to maintain highly effective mechanical senses. We screened for Drosophila mutants with defective mechanical responses at elevated ambient temperatures, and identified a gene, spam, whose role is to protect the mechanosensory organ from massive cellular deformation caused by heat-induced osmotic imbalance. Here we show that Spam protein forms an extracellular shield that guards mechanosensory neurons from environmental insult. Remarkably, heterologously expressed Spam protein also endowed other cells with superb defence against physically and chemically induced deformation. We studied the mechanical impact of Spam coating and show that spam-coated cells are up to ten times stiffer than uncoated controls. Together, these results help explain how poikilothermic organisms preserve the architecture of critical cells during environmental stress, and illustrate an elegant and simple solution to such challenge.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2387185 | PMC |
http://dx.doi.org/10.1038/nature06603 | DOI Listing |
Science
January 2025
Department of Developmental and Cell Biology, University of California, Irvine, Irvine, CA, USA.
Conventionally, the size, shape, and biomechanics of cartilages are determined by their voluminous extracellular matrix. By contrast, we found that multiple murine cartilages consist of lipid-filled cells called lipochondrocytes. Despite resembling adipocytes, lipochondrocytes were molecularly distinct and produced lipids exclusively through de novo lipogenesis.
View Article and Find Full Text PDFPLoS One
January 2025
Institute for Health Systems Science, Faculty of Technology, Policy and Management, Delft University of Technology, Delft, The Netherlands.
Mathematical modeling plays an important role in our understanding and targeting therapy resistance mechanisms in cancer. The polymorphic Gompertzian model, analyzed theoretically and numerically by Viossat and Noble to demonstrate the benefits of adaptive therapy in metastatic cancer, describes a heterogeneous cancer population consisting of therapy-sensitive and therapy-resistant cells. In this study, we demonstrate that the polymorphic Gompertzian model successfully captures trends in both in vitro and in vivo data on non-small cell lung cancer (NSCLC) dynamics under treatment.
View Article and Find Full Text PDFCurr Opin Hematol
January 2025
Department of Biomedical and Molecular Sciences, Queen's University.
Purpose Of Review: To date, there is relatively limited research investigating changes in red blood cells (RBCs), particularly qualitative changes, in cancer patients and cancer patients receiving treatment. These changes may be important in better understanding cancer-associated anemia, which is the most prevalent hematological disorder in cancer patients with wide-ranging implications on patient care and quality of life. This review aims to summarize available evidence regarding qualitative and quantitative changes in RBCs in individuals with cancer prior to treatment and in patients undergoing treatment.
View Article and Find Full Text PDFStem cells exist within a niche, a microenvironment that regulates their activity, but the mechanisms by which niche cells influence stem cell behaviour are poorly understood. In this issue, Stephen DiNardo and colleagues reveal that the shape of the adult Drosophila testes niche, which is dependent on the cytoskeleton of the niche cells, is crucial to maintaining germinal stem cell function. To learn more about this work, we spoke to first author Gabriela Vida and corresponding author Stephen DiNardo, Professor of Cell and Developmental Biology at the University of Pennsylvania, USA.
View Article and Find Full Text PDFBackground: Alzheimer's Disease (AD) and traumatic brain injuries (TBI) are frequently associated in medical literature, with a significant prevalence of TBI history observed among individuals diagnosed with AD. Our investigation focuses on this intersection, explicitly examining the risk of AD in individuals with a history of TBI. While current targets in cerebrospinal fluid and plasma can effectively detect acute TBI, the challenge lies in identifying biosignatures associated with TBI long after injury.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!