Exposure to mercury from dental amalgams, with possible negative health effects, has generally been considered to occur via either erosion or evaporation directly from the surface of fillings, followed by ingestion. The aim of this study was to determine the relative importance of the direct migration of mercury through the tooth as an alternative exposure pathway. X-ray fluorescence imaging has been used to determine quantitatively the spatial distribution of Hg, Ca, Zn and Cu in sections of human teeth that had been filled with amalgam for more than 20 years. X-ray absorption near-edge spectroscopy (XANES) was also employed to gain chemical information on the mercury present in the teeth. Hg (up to approximately 10 mg g(-1)) and Zn (>100 mg g(-1)) were detected in the teeth several millimetres from the location of the amalgams. At high resolution, Hg showed higher concentrations in dentinal tubules while Zn was generally evenly distributed. XANES showed that the chemical form of Hg that had migrated into the tooth had been altered from that present in the amalgam. The differing spatial distributions of Hg and Zn suggest distinct transport mechanisms for the two metals, presumably chemical for Zn and initially physical for Hg. Subsequent oxidation of Hg may lead to a loss of mobility or the development of a secondary transport mechanism. Most importantly the detection of Hg in areas of the tooth that once contained an active bloodstream and in calculus indicates that both exposure pathways should be considered as significant.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1107/S0909049507061468 | DOI Listing |
ACS Omega
December 2024
Gas Field Company, Shaanxi Yanchang Petroleum (Group) Co., Ltd., Yan'an 716000, China.
Gas-water distribution is significant in the determination of hydrocarbon accumulation mechanisms in gas reservoirs, especially for the exploitation of tight sandstone reservoirs. One of such examples are the gas reservoirs in the Yishan Slope in China, where the internal relationship between gas-water distribution is poorly understood. The pattern and controlling factors for gas-water distribution in tight sandstones gas reservoirs in the Yishan Slope have been examined from macro (such as sedimentary and anticlinal structures) and micro (such as pore throat size, heterogeneity) perspectives, using data from rock eval pyrolysis, sedimentary structure, sediment diagenesis, gas migration, mercury injection experiments, and well logs.
View Article and Find Full Text PDFSpectrochim Acta A Mol Biomol Spectrosc
December 2024
School of Water Conservancy and Environment, University of Jinan, Jinan 250022, China. Electronic address:
As a heavy metal contaminant, mercury ion (Hg) has caused great harm to environment and life. Mercury ions will migrate and transform in the environment and eventually accumulate in the human body, thus causing human poisoning. Therefore, it is of great significance to detect Hg in the environment and living bodies.
View Article and Find Full Text PDFJ Hazard Mater
December 2024
College of Marine Geosciences, Ocean University of China, Qingdao 266100, PR China; Key Laboratory of Submarine Geosciences and Technology, MOE, Ocean University of China, Qingdao 266100, China.
As an important link of mercury (Hg) migration and transformation from land to ocean, rivers have been significantly influenced by anthropogenic activities, resulting in unpredictable environmental influences on the basin and offshore areas. In this study, the particulate Hg content of sediments in Xiaolangdi Reservoir (XLDR), Lijin Hydrological Station, and the Yellow River estuarine area during the water-sediment regulation scheme (WSRS) period in 2018 were analyzed, the characteristics and influencing factors of particulate Hg transport were explored. Our results revealed that the transport flux of particulate Hg into the sea during WSRS was 8.
View Article and Find Full Text PDFMar Environ Res
January 2025
Department of Ocean Science and the Center for Ocean Research in Hong Kong and Macau, The Hong Kong University of Science and Technology, Hong Kong, China; State Key Laboratory of Marine Pollution, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, China. Electronic address:
Mangroves serve a crucial role as metal accumulators in tropical and subtropical marine ecosystems, particularly in riverine mangroves, which frequently interact with terrestrial sources. In this study, we focused on the Gaoqiao and Jiuzhou Rivers within the Zhanjiang mangrove forest in Guangdong, China, and collected leaves and surface sediments from the dominant mangrove plant, Aegiceras corniculatum, near the riverbanks. We focused on seven heavy metals (Cr, Cu, Zn, As, Cd, Pb, and Hg) in mangrove leaves, surface sediments, and pore water due to their environmental significance and frequent occurrence in mangrove ecosystems.
View Article and Find Full Text PDFSci Rep
November 2024
State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation, Chengdu University of Technology, Chengdu, Sichuan, 610059, China.
Quaternary mudstone biogas reservoirs in the Qaidam Basin have shown great potential. However, complex pore structures with high clay contents and high heterogeneity limit the understanding of the storage and migration principles of these reservoirs. In this paper, HPMI and nitrogen adsorption experiments, in combination with NMR experiments under water saturation, centrifugation, various drying temperatures and other conditions, were adopted to determine the pore structure characteristics.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!