Temporal regulation of M-phases of the cell cycle requires precise molecular mechanisms that differ among different cells. This variable regulation is particularly clear during embryonic divisions. The first embryonic mitosis in the mouse lasts twice as long as the second one. In other species studied so far (C. elegans, Sphaerechinus granularis, Xenopus laevis), the first mitosis is also longer than the second, yet the prolongation is less pronounced than in the mouse. We have found recently that the mechanisms prolonging the first embryonic M-phase differ in the mouse and in Xenopus embryos. In the mouse, the metaphase of the first mitosis is specifically prolonged by the unknown mechanism acting similarly to the CSF present in oocytes arrested in the second meiotic division. In Xenopus, higher levels of cyclins B participate in the M-phase prolongation, however, without any cell cycle arrest. In Xenopus embryo cell-free extracts, the inactivation of the major M-phase factor, MPF, depends directly on dissociation of cyclin B from CDK1 subunit and not on cyclin B degradation as was thought before. In search for other mitotic proteins behaving in a similar way as cyclins B we made two complementary proteomic screens dedicated to identifying proteins ubiquitinated and degraded by the proteasome upon the first embryonic mitosis in Xenopus laevis. The first screen yielded 175 proteins. To validate our strategy we are verifying now which of them are really ubiquitinated. In the second one, we identified 9 novel proteins potentially degraded via the proteasome. Among them, TCTP (Translationally Controlled Tumor Protein), a 23-kDa protein, was shown to be partially degraded during mitosis (as well as during meiotic exit). We characterized the expression and the role of this protein in Xenopus, mouse and human somatic cells, Xenopus and mouse oocytes and embryos. TCTP is a mitotic spindle protein positively regulating cellular proliferation. Analysis of other candidates is in progress.

Download full-text PDF

Source
http://dx.doi.org/10.2478/v10042-008-0001-zDOI Listing

Publication Analysis

Top Keywords

temporal regulation
8
cell cycle
8
embryonic mitosis
8
xenopus laevis
8
degraded proteasome
8
xenopus mouse
8
xenopus
7
mouse
6
embryonic
5
mitosis
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!