Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
A multiresolution approach based on a modified wavelet transform called the tree-structured wavelet transform or wavelet packets is proposed. The development of this transform is motivated by the observation that a large class of natural textures can be modeled as quasi-periodic signals whose dominant frequencies are located in the middle frequency channels. With the transform, it is possible to zoom into any desired frequency channels for further decomposition. In contrast, the conventional pyramid-structured wavelet transform performs further decomposition in low-frequency channels. A progressive texture classification algorithm which is not only computationally attractive but also has excellent performance is developed. The performance of the present method is compared with that of several other methods.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1109/83.242353 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!