A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

OSTM1 regulates beta-catenin/Lef1 interaction and is required for Wnt/beta-catenin signaling. | LitMetric

OSTM1 regulates beta-catenin/Lef1 interaction and is required for Wnt/beta-catenin signaling.

Cell Signal

Cold Spring Harbor Laboratory, One Bungtown Road, Cold Spring Harbor, NY 11724, United States.

Published: May 2008

The Wnt/beta-catenin signaling pathway controls key aspects of embryonic development and adult tissue homeostasis, including the formation and maintenance of bone. Recently, mutations in the OSTM1 gene were found to be the cause of severe autosomal recessive osteopetrosis in both the mouse and humans. This disorder is characterized by increased bone mass resulting from a defect in osteoclast maturation. The possible role of OSTM1 in signaling of the Wnt/beta-catenin "canonical" pathway was investigated in totipotent mouse F9 embryonal teratocarcinoma cells. Overexpression of OSTM1 in F9 cells increased Wnt3a-responsive beta-catenin accumulation and Lef/Tcf-sensitive transcription. Similarly, knockdown of endogenous OSTM1 attenuated the ability of Wnt3a to stimulate the canonical signaling pathway. An OSTM1 mutant (detected in humans with osteopetrosis) was expressed in F9 cells and found to inhibit Wnt-stimulated beta-catenin stabilization, gene transcription, and primitive endoderm formation. Expression of this OSTM1 C-terminal deletion mutant attenuated Lef/Tcf-sensitive gene transcription, even when transcription was activated by expression of a constitutively-active form of beta-catenin. However, expression of this OSTM1 C-terminal deletion mutant was unable to alter Lef/Tcf-sensitive gene transcription when transcription was activated by expression of a beta-catenin/Lef chimeric protein. From the standpoint of protein-protein interactions, expression of wild-type OSTM1 stimulated whereas mutant OSTM1 inhibited, the Wnt-dependent association of beta-catenin and Lef1. On the foundation of these experiments, we propose that the human mutations in OSTM1 such as the C-terminal deletion mutant studied herein provoke dysregulation of the canonical Wnt/beta-catenin signaling pathway, providing a molecular basis for severe autosomal recessive osteopetrosis.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4275117PMC
http://dx.doi.org/10.1016/j.cellsig.2008.01.009DOI Listing

Publication Analysis

Top Keywords

wnt/beta-catenin signaling
12
signaling pathway
12
gene transcription
12
ostm1 c-terminal
12
c-terminal deletion
12
deletion mutant
12
ostm1
11
signaling wnt/beta-catenin
8
mutations ostm1
8
severe autosomal
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!