A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Determination of soil biodegradation half-lives from simulation testing under aerobic laboratory conditions: a kinetic model approach. | LitMetric

A kinetic model approach for determination of biodegradation half-lives from soil simulation testing is presented. The model describes transformation of the parent compound to metabolites and formation of bound (non-extractable) residues as well as mineralization in soil under aerobic laboratory conditions. Experimental data for several pesticide compounds from various soil simulation tests are used for fitting kinetic rate constants. Formation of bound residues, either from parent or metabolites or from both, can be described by first-order kinetics for all examined compounds. Correlation of kinetic rate constants of primary degradation and formation of bound residues from parent compound suggests a common mechanism, presumably co-metabolic microbial activity, for both processes. Inverse modelling allows for estimation of primary degradation half-life DegT50 instead of disappearance time DT50. Application of the DegT50 approach in PBT assessment might result in a different persistent classification for which the developed model delivers an appropriate evaluation tool.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.envpol.2007.12.040DOI Listing

Publication Analysis

Top Keywords

formation bound
12
biodegradation half-lives
8
simulation testing
8
aerobic laboratory
8
laboratory conditions
8
kinetic model
8
model approach
8
soil simulation
8
parent compound
8
kinetic rate
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!