The mitochondrial RNA-binding proteins (MRP) 1 and 2 play a regulatory role in RNA editing and putative role(s) in RNA processing in Trypanosoma brucei. Here, we report the purification of a high molecular weight protein complex consisting solely of the MRP1 and MRP2 proteins from the mitochondrion of T. brucei. The MRP1/MRP2 complex natively purified from T. brucei and the one reconstituted in Escherichia coli in vivo bind guide (g) RNAs and pre-mRNAs with dissociation constants in the nanomolar range, and efficiently promote annealing of pre-mRNAs with their cognate gRNAs. In addition, the MRP1/MRP2 complex stimulates annealing between two non-cognate RNA molecules suggesting that along with the cognate duplexes, spuriously mismatched RNA hybrids may be formed at some rate in vivo. A mechanism of catalysed annealing of gRNA/pre-mRNA by the MRP1/MRP2 complex is proposed.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2492832PMC
http://dx.doi.org/10.1016/j.ijpara.2007.12.009DOI Listing

Publication Analysis

Top Keywords

mrp1/mrp2 complex
16
trypanosoma brucei
8
complex
5
structure function
4
function native
4
native recombinant
4
recombinant mitochondrial
4
mrp1/mrp2
4
mitochondrial mrp1/mrp2
4
complex trypanosoma
4

Similar Publications

The in vivo effect of rifampicin, a potent ligand of PXR, on gene expression of CYP2B22, 3A22, 3A29, 3A46, CAR, PXR and MDR1, MRP1, MRP2, LRP transporters in liver and cortex, cerebellum, midbrain, hippocampus, meninges and brain capillaries of pig was investigated. Animals were treated i.p.

View Article and Find Full Text PDF

Purpose: Frequent epileptic seizures or prolonged seizure activity (status epilepticus, SE) is known to increase the brain expression of drug efflux transporter genes and proteins, such as P-glycoprotein (Pgp) and members of the multidrug resistance protein (MRP) family, which might reduce brain levels of antiepileptic drugs and, therefore, be involved in drug resistance. However, the time course of alterations in Pgp or MRPs after seizures or SE is only incompletely known.

Methods: This prompted us to study the time course of alterations in the expression of different efflux transporter genes (Mdr1a, Mdr1b, MRP1, MRP2, MRP5) at various times after a pilocarpine-induced SE in limbic brain regions, using quantitative real-time polymerase chain reaction (RT-PCR) (qPCR).

View Article and Find Full Text PDF

The mitochondrial RNA-binding proteins (MRP) 1 and 2 play a regulatory role in RNA editing and putative role(s) in RNA processing in Trypanosoma brucei. Here, we report the purification of a high molecular weight protein complex consisting solely of the MRP1 and MRP2 proteins from the mitochondrion of T. brucei.

View Article and Find Full Text PDF

The mitochondrial RNA binding proteins MRP1 and MRP2 form a heteromeric complex that functions in kinetoplastid RNA editing. In this process, MRP1/MRP2 serves as a matchmaker by binding to guide RNAs and facilitating their hybridization with cognate preedited mRNAs. To understand the mechanism by which this complex performs RNA matchmaking, we determined structures of Trypanosoma brucei apoMRP1/MRP2 and an MRP1/MRP2-gRNA complex.

View Article and Find Full Text PDF

Transport of ethinylestradiol glucuronide and ethinylestradiol sulfate by the multidrug resistance proteins MRP1, MRP2, and MRP3.

J Pharmacol Exp Ther

April 2004

Department of Drug Metabolism, RY80M-112, Merck & Co. Inc., 126 East Lincoln Avenue, Rahway, NJ, USA.

Ethinylestradiol (EE) is one of the key constituents of oral contraceptives. Major metabolites of EE in humans are the glucuronide and sulfate conjugates, EE-3-O-glucuronide (EE-G) and EE-3-O-sulfate (EE-S). In the present study, transport of EE-G and EE-S by the human multidrug resistance proteins MRP1, MRP2, and MRP3 was investigated using inside-out membrane vesicles, isolated from Sf9 cells expressing human MRP1, MRP2, or MRP3.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!