Olanzapine was investigated as an inhibitor of glycogen synthase kinase-3beta (GSK-3beta) in an attempt to evaluate its effect on blood glucose level. The investigation included simulated docking experiments to fit olanzapine within the binding pocket of GSK-3beta followed by in vitro enzyme inhibition assay as well as in vivo subchronic animal treatment. Olanzapine was found to readily fit within the binding pocket of GSK-3beta in a low energy orientation characterized with optimal attractive interactions bridging the tricyclic thienobenzodiazepine nitrogen and sulfur atoms of olanzapine and the residue of VAL-135 of GSK-3beta. In vivo experiments showed a significant decrease in fasting blood glucose level in Balb/c mice at 1.0, 2.0 and 3.0 mg/kg dose levels (P<0.05) and 6 fold increase in liver glycogen level at the 3 mg/kg dose level (P<0.001). Moreover; olanzapine was found to potently inhibit recombinant GSK-3beta in vitro (IC(50) value=91.0 nM). Our findings strongly suggest that olanzapine has significant GSK-3beta inhibition activity that could justify some of its pharmacological effects and glucose metabolic disturbances.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ejphar.2008.01.019 | DOI Listing |
Sci Rep
January 2025
Department of Pharmacology and Toxicology, Faculty of Pharmacy, Ahram Canadian University, Giza, Egypt.
Unlabelled: Despite the fact that canagliflozin (Cana), a sodium-glucose cotransporter 2 inhibitor, is an anti-diabetic medication with additional effects on the kidney, there is limited experimental data to deliberate its hepato-reno-protective potentiality. Acetaminophen (APAP) overdose remains one of the prominent contributors to hepato-renal damage.
Aim: Our study assessed the novel effect of Cana against APAP-induced toxicities.
J Psychiatry Neurosci
January 2025
From the Computational Biology Centre and the Laboratory of Psychiatric-Neuroimaging-Genetic and Comorbidity, Tianjin Anding Hospital, Tianjin Mental Health Centre of Tianjin Medical University, Nankai University Affiliated Tianjin Anding Hospital, Tianjin, China.
Background: Clozapine is superior to all other antipsychotics in treating schizophrenia in terms of its curative efficacy; however, this drug is prescribed only as a last resort in the treatment of schizophrenia, given its potential to induce cardiac arrest. The mechanism of clozapine-induced cardiac arrest remains unclear, so we aimed to elucidate the potential mechanisms of clozapine-induced cardiac arrest using network pharmacology and molecular docking.
Methods: We identified and analyzed the overlap between potential cardiac arrest-related target genes and clozapine target genes.
Alzheimers Dement
December 2024
Anesthesia, Critical Care & Pain Medicine, Boston, MA, USA.
Background: Spouses of Alzheimer's disease (AD) patients are at a higher risk of developing incidental dementia. However, the causes and underlying mechanism of this clinical observation remain largely unknown. One possible explanation is linked to microbiota dysbiosis, a condition that has been associated with AD.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
Amity Institute of Pharmacy, Amity University, Gurugram, Haryana, India.
Background: The current study aimed to investigate the chemical interaction of naringenin with the possible receptors and enzymes involved in the pathogenesis of cognitive deficits and tested their ADME and toxicity. Furthermore, in-vivo studies have also done to evaluate the effect of naringenin and its nanoparticles on STZ-induced cognitive decline in mice.
Method: Naringenin were evaluated against the active sites of β-secretase 1 (PDB: 3UQU), human insulin-degrading enzyme (PDB: 4RE9), insulin receptor tyrosine kinase (PDB: 1IR3), glycogen synthase kinase-3 β (PDB: 3L1S), phosphoprotein phosphatase 2A (PDB: 3P71), human superoxide dismutase I (PDB: 5YT0), catalase-3 (PDB:3EJ6), and human acetylcholinesterase (PDB: 4EY7) in comparison of rivastigmine using molecular docking studies.
Alzheimers Dement
December 2024
NYU Grossman School of Medicine, New York, NY, USA.
Background: Neurofibrillary tangles (NFTs), one of the hallmarks of Alzheimer's disease (AD), are composed of highly phosphorylated forms of the microtubule-associated protein tau. Phosphorylation results from the activity of several threonine/serine kinases, and increased expression of glycogen synthase kinase-3β (GSK-3β). These are involved in the formation of paired helical filament (PHF)-tau, which induces the formation of NFTs.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!