Objective: To evaluate whether leg cycling training in subjects with chronic stroke can improve cycling performance, aerobic capacity, muscle strength, and functional performance and to determine if electric stimulation (ES) to the contralateral (paretic) leg during cycling has additional effects over cycling without ES.
Design: A randomized controlled trial, with a partial double-blind design.
Setting: A rehabilitation center.
Participants: Twelve stroke patients (range, 18-70 y), more than 5 months poststroke, with lower-extremity hemiparesis.
Intervention: Subjects were randomly assigned to groups that performed cycling exercise, one with ES evoking muscle contractions and a control group with ES not evoking muscle contractions. Subjects, blinded for group assignment, trained twice a week for 6 weeks.
Main Outcome Measures: Changes in aerobic capacity and maximal power output, functional performance, and lower-limb muscle strength.
Results: Aerobic capacity and maximal power output significantly increased by 13.8%+/-19.1% and 38.1%+/-19.8%, but muscle strength was not significantly enhanced after training. Functional performance improved (ie, scores on the Berg Balance Scale increased by 6.9%+/-5.8% (P=.000) and the six-minute walk test improved by 14.5%+/-14.1% (P=.035). There was no significant effect on the Rivermead Mobility Index (P=.165). Training-induced changes were not significantly different between the 2 groups. Changes in cycling performance and aerobic capacity were not significantly related to changes in functional performance.
Conclusions: This study showed that a short cycling training program on a semirecumbent cycle ergometer can markedly improve cycling performance, aerobic capacity, and functional performance of people with chronic stroke. The use of ES had no additional effects in this specific group of subjects with chronic stroke.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.apmr.2007.09.028 | DOI Listing |
Exp Brain Res
January 2025
School of Rehabilitation Sciences, Université Laval, Quebec, Canada.
Navigating public environments requires adjustments to one's walking patterns to avoid stationary and moving obstacles. It is known that physical inactivity induces alterations in motor capacities, but the impact of inactivity on anticipatory locomotor adjustments (ALA) has not been studied. The purpose of the present exploratory study was to compare ALAs and related muscle co-contraction during a pedestrian circumvention task between active (AA) and inactive young adults (IA).
View Article and Find Full Text PDFEur J Clin Invest
January 2025
Department of Surgical, Medical and Molecular Pathology and Critical Area, Laboratory of Biochemistry, University of Pisa, Pisa, Italy.
Sotatercept binds free activins by mimicking the extracellular domain of the activin receptor type IIA (ACTRIIA). Additional ligands are BMP/TGF-beta, GDF8, GDF11 and BMP10. The binding with activins leads to the inhibition of the signalling pathway and the deactivation of the bone morphogenic protein (BMP) receptor type 2.
View Article and Find Full Text PDFZhongguo Dang Dai Er Ke Za Zhi
January 2025
Department of Respiratory Medicine, Children's Hospital of Chongqing Medical University/National Clinical Research Center for Child Health and Disorders /Ministry of Education Key Laboratory of Child Development and Disorders/Chongqing Key Laboratory of Pediatrics, Chongqing 400014, China.
Children with bronchopulmonary dysplasia (BPD) often exhibit severe respiratory problems and significant pulmonary dysfunction during school age and adulthood. Exercise tests show a decline in cardiopulmonary function and physical performance in children with BPD, who also have a higher incidence of pulmonary hypertension. These children generally perform poorly in terms of intelligence, language, and motor development.
View Article and Find Full Text PDFPerioper Med (Lond)
January 2025
Department Physiotherapy, Nij Smellinghe Hospital, Drachten, The Netherlands.
Background: Multimodal prehabilitation programs are effective at reducing complications after colorectal surgery in patients with a high risk of postoperative complications due to low aerobic capacity and/or malnutrition. However, high implementation fidelity is needed to achieve these effects in real-life practice. This study aimed to investigate the implementation fidelity of an evidence-based prehabilitation program in the real-life context of a Dutch regional hospital.
View Article and Find Full Text PDFBrain Res
January 2025
The Second Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin 15000, China. Electronic address:
Objectives: Exercise as a non-pharmacological intervention can exert beneficial effects directly through exosomes crossing the blood-brain barrier and reduce apoptosis after cerebral ischaemia/reperfusion injury (CI/RI). miRNA-124 (miR-124) is present in exosomes and plays an important role in regulating cerebral neurological activity; however, the mechanism of the relationship between exercise and the activity of exosomes and apoptosis after CI/RI remains unclear. Therefore, the present study investigated the effects of exercise preconditioning on cerebral ischemia/reperfusion injury from the perspective of exosomal miR-124 and apoptosis.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!