Alterations in the brain that contribute to the development of epilepsy, also called epileptogenesis, are not well understood, which makes it difficult to develop strategies for preventing epilepsy. Here we have studied the role of the CRE binding transcription factors, cyclic-AMP responsive element modulator (CREM) and inducible cyclic-AMP early repressor (ICER), in the development of epilepsy following pilocarpine induced status epilepticus (SE) in mice. Following SE, ICER mRNA and protein are increased in neurons. The increase in ICER, however, is not necessary for neuronal injury following SE as pilocarpine treatment induces equivalent neuronal injury in pyramidal neurons of wild type and CREM/ICER null mice. Following SE, the CREM/ICER null mice develop a more severe epileptic phenotype experiencing approximately threefold more frequent spontaneous seizures. Together these data suggest that the increase in ICER mRNA following SE may have a role in suppressing the severity of epilepsy.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2372160 | PMC |
http://dx.doi.org/10.1016/j.neuroscience.2007.10.064 | DOI Listing |
Proc Natl Acad Sci U S A
February 2025
College of Agronomy, Hunan Agricultural University, Changsha 410128, China.
Seed color is a critical quality trait in numerous plant species. In oilseed crops, including rapeseed and mustard, yellow seeds are distinguished by their significantly higher oil content and faster germination rates compared to black or brown counterparts. Despite the agronomic significance of the yellow seeds being a prime breeding target, the mechanisms underlying elevated oil content remain obscure.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
February 2025
State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou 510050, China.
Chromobox 2 (CBX2), a crucial component of the polycomb repressive complex (PRC), has been implicated in the development of various human cancers. However, its role in the regulation of tumor immunogenicity and immune evasion remains inadequately understood. In this study, we found that ablation of CBX2 led to tumor growth inhibition, activation of the tumor immune microenvironment, and enhanced therapeutic efficacy of anti-PD1 or adoptive T cell therapies by using murine syngeneic tumor models.
View Article and Find Full Text PDFScience
January 2025
Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China.
Cochlear inner hair cells (IHCs) and outer hair cells (OHCs) require different transcription factors for their cell fate stabilization and survival, suggesting separate mechanisms are involved. Here, we found that the transcription factor Casz1 was crucial for early IHC fate consolidation and for OHC survival during mouse development. Loss of Casz1 resulted in transdifferentiation of IHCs into OHCs, without affecting OHC production.
View Article and Find Full Text PDFPLoS Genet
January 2025
MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, United Kingdom.
The genetic circuitry that encodes the developmental programme of mammals is regulated by transcription factors and chromatin modifiers. During early gestation, the three embryonic germ layers are established in a process termed gastrulation. The impact of deleterious mutations in chromatin modifiers such as the polycomb proteins manifests during gastrulation, leading to early developmental failure and lethality in mouse models.
View Article and Find Full Text PDFPLoS Pathog
January 2025
Department of Infectious Diseases, Shanghai Institute of Infectious Diseases and Biosecurity, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, National Medical Center for Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, China.
Hepatitis B virus (HBV) X protein (HBx) is a key factor for regulating viral transcription and replication. We recently characterized homeobox protein MSX-1 (MSX1) as a host restriction factor that inhibits HBV gene expression and genome replication by directly binding to HBV enhancer II/core promoter (EnII/Cp) and suppressing its promoter and enhancer activities. Notably, HBx expression was observed to be repressed more drastically by MSX1 compared to other viral antigens.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!