Spatial distribution of cingulate cortical cells projecting to the primary motor cortex in the rat.

Neurosci Res

Department of Physiology, China Medical University, 92 North 2 Road, Heping District, Shenyang 110001, China.

Published: April 2008

We examined the location and spatial distribution of cingulate cortical cells projecting to the primary motor cortex (M1) in rats, using a double retrograde-labeling technique. The orofacial, forelimb, and hindlimb areas of M1 were physiologically identified based on the findings of intracortical microstimulation and single cell recording. Two different tracers, diamidino yellow and fast blue, were injected into two sites of M1 in each rat. Retrograde-labeled cells in the cingulate cortex were plotted with an automated plotting system. Cells projecting to the orofacial and forelimb areas of M1 were distributed in the anterior cingulate cortex (area 24) but not in the posterior cingulate cortex (retrosplenial cortex; area 29), according to topographical mapping. On the other hand, few or no cells of the cingulate cortex were observed projecting to the hindlimb area of M1. These findings suggest that the cingulate cortex projecting to the M1 in the rat are involved in the regulation of motor activity that involves the orofacial and forelimb, but not hindlimb, parts of the body.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.neures.2007.12.012DOI Listing

Publication Analysis

Top Keywords

cingulate cortex
20
cells projecting
12
orofacial forelimb
12
spatial distribution
8
distribution cingulate
8
cingulate cortical
8
cortical cells
8
projecting primary
8
primary motor
8
cortex
8

Similar Publications

Increased intolerance of uncertainty (IU), or distress felt when encountering situations with unknown outcomes, occurs transdiagnostically across various forms of psychopathology and is targeted in therapeutic intervention. Increased intolerance of uncertainty shows overlap with symptoms of internalizing disorders, such as depression and anxiety, including negative affect and anxious apprehension (worry). While neuroanatomical correlates of IU have been reported, previous investigations have not disentangled the specific neural substrates of IU above and beyond any overlapping relationships with aspects of internalizing psychopathology.

View Article and Find Full Text PDF

Fear generalization, a lack of discrimination between safe and unsafe cues, is a hallmark of posttraumatic stress disorder. The phosphodiesterase 5 (PDE5) regulates the cyclic guanosine monophosphate (cGMP) pathway, which has been proposed to be involved in fear memory generalization. However, whether PDE5 activity underlies fear memory generalization remains unexplored.

View Article and Find Full Text PDF

The anterior cingulate cortex (ACC) is recognized as a pivotal cortical region involved in the perception of pain. The retrosplenial cortex (RSC), located posterior to the ACC, is known to play a significant role in navigation and memory processes. Although the projections from the RSC to the ACC have been found, the specifics of the synaptic connections and the functional implications of the RSC-ACC projections remain less understood.

View Article and Find Full Text PDF

This study examined the effects of treadmill running (TR) regimens on craniofacial pain- and anxiety-like behaviors, as well as their effects on neural changes in specific brain regions of male mice subjected to repeated social defeat stress (SDS) for 10 days. Behavioral and immunohistochemical experiments were conducted to evaluate the impact of TR regimens on SDS-related those behaviors, as well as epigenetic and neural activity markers in the anterior cingulate cortex (ACC), insular cortex (IC), rostral ventromedial medulla (RVM), and cervical spinal dorsal horn (C2). Behavioral responses were quantified using multiple tests, while immunohistochemistry measured histone H3 acetylation, histone deacetylases (HDAC1, HDAC2), and neural activity markers (FosB and phosphorylated cAMP response element-binding protein (pCREB).

View Article and Find Full Text PDF

Objective: Disorders of arousal (DoA) are characterized by an intermediate state between wakefulness and deep sleep, leading to incomplete awakenings from NREM sleep. Multimodal studies have shown subtle neurophysiologic alterations even during wakefulness in DoA. The aim of this study was to explore the brain functional connectivity in DoA and the metabolic profile of the anterior and posterior cingulate cortex, given its pivotal role in cognitive and emotional processing.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!