AI Article Synopsis

  • This study explores how negatively-charged air conditions can improve human health by analyzing their effects on various biological markers related to the psycho-neuro-endocrino-immune (PNEI) network in controlled indoor environments.
  • Healthy volunteers were exposed to specially designed negatively-charged experimental rooms (NCRs) and control rooms (CTRs), where several biological responses were monitored, showing significant differences between the two settings.
  • Results indicated that negatively-charged air may enhance immune responses, improve blood flow, and stabilize the autonomic nervous system; however, further research is needed to understand the long-term impacts of this air quality on health.

Article Abstract

Background: Against increasing environmental adverse effects on human health such as those associated with water and ground pollution, as well as out- and indoor air conditions, trials were conducted to support and promote human health by improving the indoor air atmosphere. This study was performed to estimate the effect of negatively-charged air conditions on human biological markers related to the psycho-neuro-endocrino-immune (PNEI) network.

Objectives: After construction of negatively-charged experimental rooms (NCRs), healthy volunteers were admitted to these rooms and control rooms (CTRs) and various biological responses were analyzed.

Methods: NCRs were constructed using a fine charcoal coating and applying an electric voltage (72 V) between the backside of walls and the ground. Various biological markers were monitored that related to general conditions, autonomic nervous systems, stress markers, immunological parameters and blood flow.

Results: Regarding the indoor environment, only negatively-charged air resulted in the difference between the CTR and NCR groups. The well-controlled experimental model-room to examine the biological effects of negatively-charged air was therefore established. Among the various parameters, IL-2, IL-4, the mean RR interval of the heart rate, and blood viscosity differed significantly between the CTR and NCR groups. In addition, the following formula was used to detect NCR-biological responses: Biological Response Value (BRV)=0.498+0.0005 [salivary cortisol]+0.072 [IL-2]+0.003 [HRM-SD]-0.013 [blood viscosity]-0.009 [blood sugar]+0.017 [pulse rate].

Conclusions: Negatively-charged air conditions activated the immune system slightly, smoothened blood flow and stabilized the autonomic nervous system. Although this is the first report to analyze negatively-charged air conditions on human biological responses, the long-term effects should be analyzed for the general use of these artificial atmospheres.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.envint.2008.01.003DOI Listing

Publication Analysis

Top Keywords

negatively-charged air
24
air conditions
20
human health
8
indoor air
8
conditions human
8
human biological
8
biological markers
8
biological responses
8
autonomic nervous
8
ctr ncr
8

Similar Publications

Dipole Potential of Monolayers with Biologically Relevant Lipid Compositions.

Molecules

December 2024

Coimbra Chemistry Center, Institute of Molecular Sciences (CQC-IMS), University of Coimbra, 3004-535 Coimbra, Portugal.

The membrane dipole potential that arises from the interfacial water and constitutive dipolar groups of lipid molecules modulates the interaction of amphiphiles and proteins with membranes. Consequently, its determination for lipid mixtures resembling the existing diversity in biological membranes is very relevant. In this work, the dipole potentials of monolayers, formed at the air-water interface, from pure or mixed lipids (1-palmitoyl-2-oleoyl--glycero-3-phosphocholine (POPC), 1-palmitoyl-2-oleoyl--glycero-3-phosphoethanolamine (POPE), 1-palmitoyl-2-oleoyl--glycero-3-phosphatidyserine (POPS), sphingomyelin (SpM) and cholesterol) were measured and correlated with the mean area per lipid.

View Article and Find Full Text PDF

Whey-Derived Antimicrobial Anionic Peptide Interaction with Model Membranes and Cells.

Langmuir

January 2025

Departamento de Química, Catedra de Química Biológica, Facultad de Ciencias Exactas, Físicas y Naturales, Universidad Nacional de Córdoba, Córdoba 5000, Argentina.

The present work focuses on one of the possible target mechanisms of action of the anionic antimicrobial peptide β-lg derived from trypsin hydrolysis of β-lactoglobulin. After confirmation of bactericidal activity against a pathogenic Gram(+) strain and demonstration of the innocuousness on a eukaryotic cell line, we investigated the interaction of β-lg with monolayers and bilayers of dpPC and dpPC:dpPG as model membranes of eukaryotic and bacterial membranes, respectively. In monolayers, compared to zwitterionic dpPC, in the negatively charged dpPC-dpPG, β-lg injected into the subphase penetrated up to higher surface pressures and showed greater extents of penetration with increasing concentration in the subphase.

View Article and Find Full Text PDF

Assembly of graphene oxide reduced graphene oxide in a phospholipid monolayer at air-water interfaces.

Phys Chem Chem Phys

January 2025

Department of Physics, School of Natural Sciences, Shiv Nadar Institution of Eminence, NH91, Tehsil Dadri, G. B. Nagar, Uttar Pradesh 201314, India.

Graphene and its derivatives, such as graphene oxide (GO) and reduced graphene oxide (rGO), have propelled advancements in biosensor research owing to their unique physicochemical and electronic characteristics. To ensure their safe and effective utilization in biological environments, it is crucial to understand how these graphene-based nanomaterials (GNMs) interact with a biological milieu. The present study depicts GNM-induced structural changes in a self-assembled phospholipid monolayer formed at an air-water interface that can be considered to represent one of the leaflets of a cellular membrane.

View Article and Find Full Text PDF

Acute severe trauma is often associated with rapid blood loss and a high risk of infection. Based on these concerns, this study successfully constructed a multifunctional dual-layer bioactive sponge PCCT with rapid hemostatic and infection-preventing ability. Its external surface is an electrospun poly(lactic acid) (PLA) nanofiber thin film layer, which ensures its high air permeability and effectively protects against external bacterial invasion.

View Article and Find Full Text PDF

Rare earth elements (REEs) are critical materials to modern technologies. They are obtained by selective separation from mining feedstocks consisting of mixtures of their trivalent cation. We are developing an all-aqueous, bioinspired, interfacial separation using peptides as amphiphilic molecular extractants.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!