A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

A rat air pouch model for evaluating the efficacy and selectivity of 5-lipoxygenase inhibitors. | LitMetric

A rat air pouch model for evaluating the efficacy and selectivity of 5-lipoxygenase inhibitors.

Eur J Pharmacol

Pfizer Global Research & Development, Pfizer Inc., St. Louis, MO 63017, USA.

Published: April 2008

The 5-lipoxygenase (5-LOX) pathway has been associated with a variety of inflammatory diseases including asthma, atherosclerosis, rheumatoid arthritis, pain, cancer and liver fibrosis. Several classes of 5-LOX inhibitors have been identified, but only one drug, zileuton, a redox inhibitor of 5-LOX, has been approved for clinical use. To better evaluate the efficacy of 5-LOX inhibitors for pharmacological intervention, a rat model was modified to test the in vivo efficacy of 5-LOX inhibitors. Inflammation was produced by adding carrageenan into a newly formed air pouch and prostaglandins produced. While macrophages and neutrophils are present in the inflamed pouch, little 5-LOX products are formed. Cellular 5-LOX activation was obtained by adding calcium ionophore (A23187) into the pouch thus providing a novel model to evaluate the efficacy and selectivity of 5-LOX inhibitors. Also, we described modifications to the in vitro 5-LOX enzyme and cell assays. These assays included a newly developed fluorescence-based enzyme assay, a 5-LOX redox assay, an ex vivo human whole blood assay and an IgE-stimulated rat mast cell assay, all designed for maximal production of leukotrienes. Zileuton and CJ-13,610, a competitive, non-redox inhibitor of 5-LOX, were evaluated for their pharmacological properties using these assays. Although both compounds achieved dose-dependent inhibition of 5-LOX enzyme activity, CJ-13,610 was 3-4 fold more potent than zileuton in all-assays. Evaluation of 5-LOX metabolites-by LC/MS/MS and ELISA confirmed that both compounds selectively inhibited all products downstream of 5-hydroperoxy eicosatetraenoic acid (5-HPETE), including 5-oxo-6,8,11,14-eicosatetraenoic acid (5-oxoETE), without inhibition of 12-lipoxygenase (12-LOX), 15-lipoxygenase (15-LOX), or cyclooxygenase (COX) products. In the rat air pouch model, oral dosing of CJ-13,610 and zileuton resulted in selective inhibition 5-LOX activity from pouch exudate and ex vivo rat whole blood with similar potency to in vitro assay. These data show that the rat air pouch model is a reliable and useful tool for evaluating in vivo efficacy of 5-LOX inhibitors and may aid in the development of the next generation of 5-LOX inhibitors, such as the non-redox inhibitors similar to CJ-13,610.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ejphar.2008.01.021DOI Listing

Publication Analysis

Top Keywords

5-lox inhibitors
24
air pouch
16
5-lox
16
rat air
12
pouch model
12
efficacy 5-lox
12
efficacy selectivity
8
inhibitors
8
inhibitor 5-lox
8
evaluate efficacy
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!