Hyperphenylalaninemia (HPA) is a group of diseases characterized by a persistent elevation of phenylalanine levels in tissues and biological fluids. The most frequent form is phenylalanine hydroxylase deficiency, causing phenylketonuria (PKU). Among 159 Israeli patients (Jews, Muslim and Christian Arabs and Druze) with HPA, in whom at least one of the mutations was characterized, a total of 43 different mutations were detected, including seven novel ones. PKU was very rare among Ashkenazi Jews and relatively frequent among Jews from Yemen, the Caucasian Mountains, Bukhara and Tunisia. The mutations responsible for the high frequency were: exon3del (Yemenite Jews), L48S (Tunisian Jews) and E178G, P281L and L48S (Jews from the Caucasian Mountains and Bukhara). Among the non-Jewish Israeli citizens, the disease was relatively frequent in the Negev and in the Nazareth vicinity, and in many localities a unique mutation was detected, often in a single family. While marked genetic heterogeneity was observed in the Arab and Jewish populations, only one mutation A300S, was frequent in all of the communities. Several of the other frequent mutations were shared by the non-Ashkenazi Jews and Arabs; none were mutual to Ashkenazi Jews and Arabs.

Download full-text PDF

Source
http://dx.doi.org/10.1111/j.1469-1809.2007.00425.xDOI Listing

Publication Analysis

Top Keywords

phenylalanine hydroxylase
8
jews
8
ashkenazi jews
8
caucasian mountains
8
mountains bukhara
8
jews arabs
8
frequent
5
mutation analysis
4
analysis phenylalanine
4
hydroxylase pah
4

Similar Publications

Microbial synthesis of m-tyrosine via whole-cell biocatalysis.

Enzyme Microb Technol

January 2025

Biotechnology Program, Department of Engineering Technology, Cullen College of Engineering, University of Houston, Houston, TX 77004, United States. Electronic address:

Meta-tyrosine (m-tyrosine), a nonproteinogenic amino acid, has shown significant potential for applications as an herbicide in agriculture and for various medical uses. However, the natural abundance of m-tyrosine is very low, limiting its widespread use. In this study, we successfully achieved microbial production of m-tyrosine by establishing the in vivo enzyme activity of phenylalanine 3-hydroxylase (PacX from Streptomyces coeruleoribudus) in E.

View Article and Find Full Text PDF

p-Coumaric acid (p-CA), an invaluable phytochemical, has novel bioactivities, including antiproliferative, anxiolytic, and neuroprotective effects, and is the main precursor of various flavonoids, such as caffeic acid, naringenin, and resveratrol. Herein, we report the engineering of Escherichia coli for de novo production of p-CA via the PAL-C4H pathway. As the base strain, we used the E.

View Article and Find Full Text PDF

Sepiapterin is an exogenously synthesized new chemical entity that is structurally equivalent to endogenous sepiapterin, a biological precursor of tetrahydrobiopterin (BH), which is a cofactor for phenylalanine hydroxylase. Sepiapterin is being developed for the treatment of hyperphenylalaninemia in pediatric and adult patients with phenylketonuria (PKU). This study employed concentration-QT interval analysis to assess QT prolongation risk following sepiapterin treatment.

View Article and Find Full Text PDF

While the branched DNA (bDNA) assay is an established bioanalytical method for measurement of lipid nanoparticle (LNP)-encapsulated messenger RNA (mRNA) pharmacokinetic parameters, reverse transcription-quantitative polymerase chain reaction (RT-qPCR) has been considered as an alternative platform. RT-qPCR and bDNA platforms were compared for sensitivity, specificity, correlation, and overall assay performance using serum and tissue samples from 2 nonclinical mouse studies of a therapeutic mRNA candidate, LNP-PAH-mRNA, which encodes for human phenylalanine hydroxylase enzyme. Pharmacokinetic parameter noncompartmental analysis was completed using Phoenix WinNonlin.

View Article and Find Full Text PDF

Coexistence of phenylketonuria and tyrosinemia type 3: challenges in the dietary management.

J Pediatr Endocrinol Metab

January 2025

Department of Rare Diseases, Institute of Graduate Studies in Health Sciences, Istanbul University, Istanbul, Türkiye.

Objectives: Phenylketonuria (PKU) and tyrosinemia type 3 (HT3) are both rare autosomal recessive disorders of phenylalanine-tyrosine metabolism. PKU is caused by a deficiency in phenylalanine hydroxylase (PAH), leading to elevated phenylalanine (Phe) and reduced tyrosine (Tyr) levels. HT3, the rarest form of tyrosinemia, is due to a deficiency in 4-hydroxyphenylpyruvate dioxygenase (HPD).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!