A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Fluorescence study of inclusion complexes between star-shaped cholic acid derivatives and polycyclic aromatic fluorescent probes and the size effects of host and guest molecules. | LitMetric

Star-shaped host molecules containing two, three, and four cholic acid moieties have been used to form inclusion complexes with polycyclic aromatic hydrocarbon probes (guests) varying in size from four (pyrene) to five (benzo(e)pyrene) and seven aromatic rings (coronene) and investigated by steady-state fluorescence measurements and fluorescence lifetime techniques. The results indicated that these hydrophobic guest probes prefer to locate in the hydrophobic cavities formed by the host molecules in an aqueous solution. Further studies showed that the stoichiometric ratios of the complexes depended on the relative size of both the host and the guest. The complexes of 1:1 ratio (guest:host) were formed between pyrene and the host molecules of different sizes, while the complexes of 1:2 ratio (guest:host) were found for coronene in all cases. For benzo(e)pyrene with an intermediate size, the complexes with 1:1 and 1:2 ratios (guest:host) were formed depending on the relative sizes of the host molecules. The stability of the inclusion complexes was observed to change with the solvent polarity, indicative of an adaptation of the hydrophobicity of the host pockets to the polarity of the solvent. The formation of the complexes was driven by the solvophobic interactions.

Download full-text PDF

Source
http://dx.doi.org/10.1021/jp711447rDOI Listing

Publication Analysis

Top Keywords

host molecules
16
inclusion complexes
12
complexes
8
cholic acid
8
polycyclic aromatic
8
host guest
8
complexes ratio
8
ratio guesthost
8
guesthost formed
8
host
7

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!