Spider dragline silk proteins, spidroins, have a tripartite composition; a nonrepetitive N-terminal domain, a central repetitive region built up from many iterated poly-Ala and Gly rich blocks, and a C-terminal nonrepetitive domain. It is generally believed that the repetitive region forms intermolecular contacts in the silk fibers, while precise functions of the terminal domains have not been established. Herein, thermal, pH, and salt effects on the structure and aggregation and/or polymerization of recombinant N- and C-terminal domains, a repetitive segment containing four poly-Ala and Gly rich coblocks, and combinations thereof were studied. The N- and C-terminal domains have mainly alpha-helical structure, and interestingly, both form homodimers. Dimerization of the end domains allows spidroin multimerization independent of the repetitive part. Reduction of an intersubunit disulfide in the C-terminal domain lowers the thermal stability but does not affect dimerization. The repetitive region shows helical secondary structure but appears to lack stable folded structure. A protein composed of this repetitive region linked to the C-terminal domain has a mainly alpha-helical folded structure but shows an abrupt transition to beta-sheet structures upon heating. At room temperature, this protein self-assembles into macroscopic fibers within minutes. The secondary structures of none of the domains are altered by pH or salt. However, high concentrations of phosphate affect the tertiary structure and accelerate the aggregation propensity of the repetitive region. Implications of these results for dragline spidroin behavior in solution and silk fiber formation are discussed.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/bi702432y | DOI Listing |
Mol Biol Rep
January 2025
Zoological Survey of India, Kolkata, 700053, India.
Background: The endangered Kashmir musk deer (Moschus cupreus), native to high-altitude Himalayas, is an ecological significant and endangered ungulate, threatened by habitat loss and poaching for musk pod distributed in western Himalayan ranges of India, Nepal and Afghanistan. Despite its critical conservation status and ecological importance in regulating vegetation dynamics, knowledge gaps persist regarding its population structure and genetic diversity, hindering effective management strategies.
Methods And Results: We aimed to understand the population genetics of Kashmir musk deer in north-western Himalayas using two mitochondrial DNA (mtDNA) regions and 11 microsatellite loci.
Sci Rep
January 2025
Department of Plant Biology, Faculty of AgriSciences, Mendel University in Brno, Zemědělská, 1665/1, 61300, Brno, Czech Republic.
Background: Persimmon (Diospyros kaki L.) belongs to the Ebenaceae family, which includes six genera and about 400 species. This study evaluated the genetic diversity of 100 persimmon accessions from Hatay province, Türkiye using 42 morphological and pomological traits, along with inter simple sequence repeat (ISSR) markers and multivariate analysis.
View Article and Find Full Text PDFProg Mol Biol Transl Sci
January 2025
Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran.
CRISPR-Cas (clustered regularly interspaced short palindromic repeats and associated proteins) is a novel genome editing technology with potential applications in treating diseases. Currently, its use in humans is restricted to clinical trials, although its growth rate is significant, and some have received initial FDA approval. It is crucial to examine and address the challenges for this technology to be implemented in clinical settings.
View Article and Find Full Text PDFCerebellum
January 2025
Genetics Department, National Institute of Neurology and Neurosurgery Manuel Velasco Suárez, Insurgentes Sur 3877. La Fama, Tlalpan, 14269, Mexico City, Mexico.
Spinocerebellar ataxia type 10 (SCA10) is an autosomal dominant (AD) neurodegenerative disorder prevalent in the Americas, particularly in Mexico. Clinical manifestations include progressive ataxia and epilepsy. However, it can exhibit wide phenotypic variability and even reduced penetrance.
View Article and Find Full Text PDFCurr Neurol Neurosci Rep
January 2025
Department of Neurology and Neurosurgery, Montreal Neurological Hospital and Institute, McGill University, Montreal, QC, Canada.
Purpose Of Review: Autosomal dominant cerebellar ataxias, also known as spinocerebellar ataxias (SCAs), are genetically and clinically diverse neurodegenerative disorders characterized by progressive cerebellar dysfunction. Despite advances in sequencing technologies, a large proportion of patients with SCA still lack a definitive genetic diagnosis. The advent of advanced bioinformatic tools and emerging genomics technologies, such as long-read sequencing, offers an unparalleled opportunity to close the diagnostic gap for hereditary ataxias.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!