Management of respiratory motion during radiation therapy requires treatment planning and simulation using imaging modalities that possess sufficient spatio-temporal accuracy and precision. An investigation into the use of a novel ultrasound (US) imaging system for assessment of respiratory motion is presented, exploiting its good soft tissue contrast and temporal precision. The system dynamically superimposes the appropriate image plane sampled from a reference CT data set with the corresponding US B-mode image. An articulating arm is used for spatial registration. While the focus of the study was to quantify the system's ability to track respiratory motion, certain unique spatial calibration procedures were devised that render the software potentially valuable to the general research community. These include direct access to all transformation matrix elements and image scaling factors, a manual latency correction function, and a three-point spatial registration procedure that allows the system to be used in any room possessing a traditional radiotherapy laser localization system. Counter-intuitively, it was discovered that a manual procedure for calibrating certain transformation matrix elements produced superior accuracy to that of an algorithmic Levenberg-Marquardt optimization method. The absolute spatial accuracy was verified by comparing the physical locations of phantom test objects measured using the spatially registered US system, and using data from a 3DCT scan of the phantom as a reference. The spatial accuracy of the display superposition was also tested in a similar manner. The system's dynamic properties were then assessed using three methods. First, the overall system response time was studied using a programmable motion phantom. This included US video update, articulating arm update, CT data set resampling, and image display. The next investigation verified the system's ability to measure the range of motion of a moving anatomical test phantom that possessed both high and low contrast test objects. Finally, the system's performance was compared to that of a four-dimensional CT (4DCT) data set. The absolute spatial and display superposition accuracy was found to be better than 2 mm and typically 1 mm. Overall dynamic system response was adequate to produce a mean relative positional error of less than 1 mm if an empiric latency correction of 3 video frames was incorporated. The dynamic CT/US display mode was able to assess phantom motion for both high and low contrast test objects to within 1 mm, and compared favorably to the 4DCT data. The 4DCT movie loop accurately assessed the target motion for both of the high and low contrast objects tested, but the minimum intensity and average intensity reconstructions did not. This investigation demonstrated that this US system possesses sufficient spatio-temporal accuracy to properly assess respiratory motion. Future work will seek to demonstrate efficacy in its clinical application to respiratory motion assessment, particularly for sites in the upper abdomen, where low tissue contrast is evident.

Download full-text PDF

Source
http://dx.doi.org/10.1118/1.2818732DOI Listing

Publication Analysis

Top Keywords

respiratory motion
24
data set
12
test objects
12
high low
12
low contrast
12
motion
10
system
9
sufficient spatio-temporal
8
spatio-temporal accuracy
8
tissue contrast
8

Similar Publications

This study was conducted to evaluate the use of 4-dimensional (4D) maximum intensity projection (4D-MIP) to compensate for the disadvantages of average intensity projection (AIP), which is used to determine the internal target volume (ITV) in lung tumors. A respiratory motion phantom with a simulated tumor was imaged using 4D computed tomography (4D-CT). AIP and 4D-MIP were generated based on 10 phases of 4D-CT, followed by contouring of the ITV and ITV; these were compared with the ITV contoured in 10 phases of 4D-CT (ITV).

View Article and Find Full Text PDF

Continuous respiration monitoring is an important tool in assessing the patient's health and diagnosing pulmonary, cardiovascular, and sleep-related breathing disorders. Various techniques and devices, both contact and contactless, can be used to monitor respiration. Each of these techniques can provide different types of information with varying accuracy.

View Article and Find Full Text PDF

Multispectral transmission imaging has emerged as a promising technique for imaging breast tissue with high resolution. However, the method encounters challenges such as low grayscale, noisy transmission images with weak signals, primarily due to the strong absorption and scattering of light in breast tissue. A common approach to improve the signal-to-noise ratio (SNR) and overall image quality is frame accumulation.

View Article and Find Full Text PDF

Whole-body PET imaging is often hindered by respiratory motion during acquisition, causing significant degradation in the quality of reconstructed activity images. An additional challenge in PET/CT imaging arises from the respiratory phase mismatch between CT-based attenuation correction and PET acquisition, leading to attenuation artifacts. To address these issues, we propose two new, purely data-driven methods for the joint estimation of activity, attenuation, and motion in respiratory self-gated TOF PET.

View Article and Find Full Text PDF

Posterior sternoclavicular joint (SCJ) dislocation is a rare but potentially life-threatening injury due to its proximity to critical mediastinal structures. Early diagnosis and prompt management are essential to prevent severe complications such as vascular or respiratory compromise. We report a case of a 23-year-old male who presented to our emergency department five days after a high-energy motor vehicle accident with isolated, closed posterior dislocation of the SCJ.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!