Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Linoleic acid, one of the major fatty acid in dietary oils, is an important source for hydroperoxides that may be formed in the presence of oxygen during food processing. Oxidized oils are absorbed in the intestine, transported as chylomicrones to the liver, and may affect unaltered hepatic cells as well as the process of hepatocarcinogenesis. We have studied the effects of linoleic acid hydroperoxides (LOOH) on growth and gene expression of cultured human hepatocellular carcinoma cells (HCC-1.2). The addition of LOOH to the medium of HCC-1.2 carcinoma cells caused dose-dependent cell loss and enhanced lactate dehydrogenase (LDH)-release. Under subtoxic conditions, LOOH induced intracellular hydrogen peroxide production, a decrease of glutathione content, elevated expression of the AP-1 components c-fos and c-jun as well as of the anti-apoptotic enzyme heme oxygenase 1 (HO-1). Furthermore, the cells were pushed by LOOH into the cell cycle as indicated by increased proportion of cells in the S- or G2/M-phase. The unoxidized linoleic acid was not active. Application of SnPPIX, a HO-1 inhibitor, decreased the viability of HCC-1.2 cells, indicating the protective role of HO-1 induction. This is the first evidence that lipid hydroperoxides of dietary origin may be an important driving force for carcinogenesis in the liver.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/mnfr.200700149 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!