Changes in the configurational entropies of molecules make important contributions to the free energies of reaction for processes such as protein-folding, noncovalent association, and conformational change. However, obtaining entropy from molecular simulations represents a long-standing computational challenge. Here, two recently introduced approaches, the nearest-neighbor (NN) method and the mutual-information expansion (MIE), are combined to furnish an efficient and accurate method of extracting the configurational entropy from a molecular simulation to a given order of correlations among the internal degrees of freedom. The resulting method takes advantage of the strengths of each approach. The NN method is entirely nonparametric (i.e., it makes no assumptions about the underlying probability distribution), its estimates are asymptotically unbiased and consistent, and it makes optimum use of a limited number of available data samples. The MIE, a systematic expansion of entropy in mutual information terms of increasing order, provides a well-characterized approximation for lowering the dimensionality of the numerical problem of calculating the entropy of a high-dimensional system. The combination of these two methods enables obtaining well-converged estimations of the configurational entropy that capture many-body correlations of higher order than is possible with the simple histogramming that was used in the MIE method originally. The combined method is tested here on two simple systems: an idealized system represented by an analytical distribution of six circular variables, where the full joint entropy and all the MIE terms are exactly known, and the R,S stereoisomer of tartaric acid, a molecule with seven internal-rotation degrees of freedom for which the full entropy of internal rotation has been already estimated by the NN method. For these two systems, all the expansion terms of the full MIE of the entropy are estimated by the NN method and, for comparison, the MIE approximations up to third order are also estimated by simple histogramming. The results indicate that the truncation of the MIE at the two-body level can be an accurate, computationally nondemanding approximation to the configurational entropy of anharmonic internal degrees of freedom. If needed, higher-order correlations can be estimated reliably by the NN method without excessive demands on the molecular-simulation sample size and computing time.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2620139 | PMC |
http://dx.doi.org/10.1002/jcc.20919 | DOI Listing |
Nano Lett
January 2025
College of Energy, Xiamen University, Xiamen 361102, China.
The optimized composition and precisely tailored structure configuration play critical roles in enhancing the catalytic reaction kinetics. Here we report a distinctive core@satellite strategy for designing the advanced platinum-nickel@platinum-nickel-copper-cobalt-indium high-entropy alloy nanowires (PtNi@HEA NWs) as efficient bifunctional catalysts in the proton exchange membrane fuel cell. Impressively, the PtNi@HEA NWs/C shows 19.
View Article and Find Full Text PDFEnviron Monit Assess
January 2025
Universidad Nacional de Córdoba - Facultad de Ciencias Agropecuarias, X5000HUA, Córdoba, Argentina.
Landscape metrics (LM) play a crucial role in fields such as urban planning, ecology, and environmental research, providing insights into the ecological and functional dynamics of ecosystems. However, in dynamic systems, generating thematic maps for LM analysis poses challenges due to the substantial data volume required and issues such as cloud cover interruptions. The aim of this study was to compare the accuracy of land cover maps produced by three temporal aggregation methods: median reflectance, maximum normalised difference vegetation index (NDVI), and a two-date image stack using Sentinel-2 (S2) and then to analyse their implications for LM calculation.
View Article and Find Full Text PDFJ Chem Phys
January 2025
CAS Key Laboratory of Theoretical Physics, Institute of Theoretical Physics, Chinese Academy of Sciences, Beijing 100190, China.
While most thermostats in molecular dynamics are designed for equilibrium systems, their extension to non-equilibrium simulations has little theoretical justification. In the literature, an artifact referred to as "lane formation" was discovered; however, its cause remained unclear and was simply attributed to a constraint on velocity fluctuations or non-ergodicity in thermostats. In addition, global deterministic thermostatted dynamics was found to exhibit unceasing phase-space compression in steady states, incompatible with their expected stationary distributions and Gibbs entropy, which was mistakenly perceived as inescapable.
View Article and Find Full Text PDFEntropy (Basel)
December 2024
China Academy of Space Technology (Xi'an), Xi'an 710100, China.
By utilizing chirp-BOK (binary orthogonal keying) modulation into a troposphere scattering communication system, a lower demodulation threshold can be achieved with excellent linear frequency modulation properties in a strong noise and weak signal environment. Firstly, the bit error rate (BER) formula of chirp-BOK modulation over a Rayleigh fading channel was derived theoretically. Then, the BER performance with different chirp-BOK parameters were numerically calculated.
View Article and Find Full Text PDFEntropy (Basel)
November 2024
School of Information Science and Technology, Shanghai Tech University, Shanghai 201210, China.
In this work, we unveil the advantages of synergizing cooperative rate splitting (CRS) with user relaying and simultaneously transmitting and reflecting reconfigurable intelligent surface (STAR RIS). Specifically, we propose a novel STAR RIS-assisted CRS transmission framework, featuring six unique transmission modes that leverage various combinations of the relaying protocols (including full duplex-FD and half duplex-HD) and the STAR RIS configuration protocols (including energy splitting-ES, mode switching-MS, and time splitting-TS). With the objective of maximizing the minimum user rate, we then propose a unified successive convex approximation (SCA)-based alternative optimization (AO) algorithm to jointly optimize the transmit active beamforming, common rate allocation, STAR RIS passive beamforming, as well as time allocation (for HD or TS protocols) subject to the transmit power constraint at the base station (BS) and the law of energy conservation at the STAR RIS.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!