Chromosomal phylogeny of four Akodontini species (Rodentia, Cricetidae) from southern Brazil established by Zoo-FISH using Mus musculus (Muridae) painting probes.

Chromosome Res

Departmento de Genética, Centro Politécnico, Universidade Federal do Paraná, Caixa Postal 19071, CEP 81531-970, Curitiba, Brazil.

Published: May 2008

We established chromosome homology maps between Mus musculus (MMU) and five species of the Akodontini tribe, Akodon cursor (2n = 14, 15 and 16), A. montensis (2n = 24), A. paranaensis (2n = 44), A. serrensis (2n = 46) and Oligoryzomys flavescens (2n = 66) by Zoo-FISH (fluorescence in situ hybridization) using mouse chromosome-specific probes. The aims of this study were (1) to detect the chromosomal rearrangements responsible for the karyotype variation in this tribe and (2) to reconstruct the phylogenetic relationships among these species. We observed four common syntenic associations of homologous chromosome segments, of which the MMU 7/19 has been described previously in other rodents from Africa, Asia and Europe, and might represent a phylogenetic link between the Old World and Neotropical rodents. The remaining three associations (3/18, 6/12 and 8/13) have been observed exclusively in Neotropical rodents so far, which at present can be considered synapomorphic traits of this group. Five further mouse chromosomes (MMU 4, 9, 14, 18 and 19) were each found evolutionarily conserved as a separate syntenic unit. Our phylogenetic analysis using parsimony and heuristic search detected one consistent group, separating the Akodontini from other rodents.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s10577-007-1211-5DOI Listing

Publication Analysis

Top Keywords

mus musculus
8
neotropical rodents
8
chromosomal phylogeny
4
phylogeny akodontini
4
akodontini species
4
species rodentia
4
rodentia cricetidae
4
cricetidae southern
4
southern brazil
4
brazil established
4

Similar Publications

Chondrocyte senescence is an important pathogenic factor causing osteoarthritis (OA) progression through persistently producing pro-inflammatory factors. Mesenchymal stem cells-derived small extracellular vesicles (MSC-sEVs) have shown anti-inflammatory effects in OA models, while persistent existence of senescent chondrocytes still promotes cartilage destruction. Therefore, improving the targeted elimination ability on senescent chondrocytes is required to facilitate the translation of MSC-sEVs in OA treatment.

View Article and Find Full Text PDF

ZAR1/2-Regulated Epigenetic Modifications are Essential for Age-Associated Oocyte Quality Maintenance and Zygotic Activation.

Adv Sci (Weinh)

January 2025

Department of Obstetrics and Gynecology, Zhejiang Key Laboratory of Precise Protection and Promotion of Fertility, Zhejiang Provincial Clinical Research Center for Reproductive Health and Disease, Assisted Reproduction Unit, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310016, China.

The developmental competence and epigenetic progression of oocytes gradually become dysregulated with increasing maternal age. However, the mechanisms underlying age-related epigenetic regulation in oocytes remain poorly understood. Zygote arrest proteins 1 and 2 (ZAR1/2) are two maternal factors with partially redundant roles in maintaining oocyte quality, mainly known by regulating mRNA stability.

View Article and Find Full Text PDF

β-secretase (BACE1) is instrumental in amyloid-β (Aβ) production, with overexpression noted in Alzheimer's disease (AD) neuropathology. The interaction of Aβ with the receptor for advanced glycation endproducts (RAGE) facilitates cerebral uptake of Aβ and exacerbates its neurotoxicity and neuroinflammation, further augmenting BACE1 expression. Given the limitations of previous BACE1 inhibition efforts, the study explores reducing BACE1 expression to mitigate AD pathology.

View Article and Find Full Text PDF

Liver organoids have been increasingly adopted as a critical in vitro model to study liver development and diseases. However, the pre-vascularization of liver organoids without affecting liver parenchymal specification remains a long-lasting challenge, which is essential for their application in regenerative medicine. Here, the large-scale formation of pre-vascularized human hepatobiliary organoids (vhHBOs) is presented without affecting liver epithelial specification via a novel strategy, namely nonparenchymal cell grafting (NCG).

View Article and Find Full Text PDF

CircRNA CDR1AS promotes cardiac ischemia-reperfusion injury in mice by triggering cardiomyocyte autosis.

J Mol Med (Berl)

January 2025

Cardiovascular Surgery Department of The First Affiliated Hospital of Harbin Medical University, and Pharmacology Department of Pharmacy College of Harbin Medical University, Harbin, 150081, China.

Myocardial ischemia/reperfusion (IR) injury is a common adverse event in the clinical treatment of myocardial ischemic disease. Autosis is a form of cell death that occurs when autophagy is excessive in cells, and it has been associated with cardiac IR damage. This study aimed to investigate the regulatory mechanism of circRNA CDR1AS on autosis in cardiomyocytes under IR.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!