Sclerosteosis and Van Buchem disease are rare, high-bone-mass disorders that have been linked to deficiency in the SOST gene, encoding sclerostin. Sclerostin belongs to the DAN family of glycoproteins, of which multiple family members have been shown to antagonize bone morphogenetic protein (BMP) and/or Wnt activity. Sclerostin is specifically expressed by osteocytes and inhibits BMP-induced osteoblast differentiation and ectopic bone formation. Sclerostin binds only weakly to BMPs and does not inhibit direct BMP-induced responses. Instead, sclerostin antagonizes canonical Wnt signaling by binding to Wnt coreceptors, low-density lipoprotein receptor-related protein 5 and 6. Several lipoprotein receptor-related protein-5 mutants that cause the high-bone-mass trait are defective in sclerostin binding. Thus, high bone mass in sclerosteosis and Van Buchem disease may result from increased Wnt signaling due to the absence of or insensitivity to sclerostin.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.2106/JBJS.G.01183 | DOI Listing |
J Mol Neurosci
January 2025
Gilgamesh Ahliya University, Baghdad, Iraq.
Glioma is a highly aggressive and invasive brain tumor with limited treatment options, highlighting the need for novel therapeutic approaches. Kinesin superfamily proteins (KIFs) are a diverse group of motor proteins that play essential roles in cellular processes such as mitosis, intracellular transport, and signal transduction, all of which are crucial for tumorigenesis. This review focuses on the multifaceted role of KIFs in glioma, examining their clinical relevance, contribution to tumor progression, and potential as therapeutic targets.
View Article and Find Full Text PDFOsteoporos Int
January 2025
Hospital del Mar Research Institute, Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable (CIBERFES), Barcelona, Spain.
A 29-year-old Spanish Caucasian man, without relevant family history, was attended in our unit due to an undiagnosed skeletal dysplasia associated with low bone mass and several fragility fractures throughout his childhood and adolescence. DXA exams throughout his life showed very low BMD values; currently, his spinal and femoral neck T-scores were - 4.3 and - 3.
View Article and Find Full Text PDFNoncoding RNA
January 2025
Laboratory of Genetics, Comparative and Evolutionary Biology, Department of Biochemistry and Biotechnology, University of Thessaly, Viopolis, Mezourlo, 41500 Larissa, Greece.
: Asthenozoospermia, characterized by reduced sperm motility, is a common cause of male infertility. Emerging evidence suggests that noncoding RNAs, particularly long noncoding RNAs (lncRNAs), play a critical role in the regulation of spermatogenesis and sperm function. Coding regions have a well-characterized role and established predictive value in asthenozoospermia.
View Article and Find Full Text PDFAdv Healthc Mater
January 2025
Department of Implantology, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Research Center of Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, No.44-1 Wenhua Road West, Jinan, Shandong, 250012, China.
Bone defects caused by fractures and diseases often do not heal spontaneously. They require external agents for repair and regeneration. Bone tissue engineering is emerging as a promising alternative to traditional therapies like autografts and allografts.
View Article and Find Full Text PDFMol Med
January 2025
Department of Nephrology, The Affiliated Hospital of Hebei University, No. 212 Yuhua East Road, Lianchi District, Baoding, 071000, Hebei Province, China.
Background: Uremia (UR) is caused by increased UR-related toxins in the bloodstream. We explored the mechanism of enterogenous toxin methylmalonic acid (MMA) in calcium-phosphorus metabolic disorder in UR rats via the Wnt/β-catenin pathway.
Methods: The UR rat model was established by 5/6 nephrectomy.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!