We have previously shown that targeting human CD34(+) hematopoietic stem cells (HSC) with a bispecific antibody (BiAb) directed against myosin light chain (MLC) increases delivery of cells to the injured hearts and improves cardiac performance in the nude rat. In this study, we have sought to validate our previous observations and to perform more detailed determination of ventricular function in immunocompetent mice with myocardial infarction (MI) that were treated with armed CD34(+) HSC. We examined whether armed CD34(+) HSC would target the injured heart following MI and restore ventricular function in vitro. MI was created by ligation of the left anterior descending artery. After 48 h, adult ICR mice received either 0.5 x 10(6) human CD34(+) HSC armed with anti-CD45 x anti-MLC BiAb or an equal volume of medium through a single tail vein injection. Two weeks after stem cell administration, ventricular function of hearts from mice receiving armed CD34(+) HSC was significantly greater compared with the same parameters from control mice. Immunohistochemistry confirmed the accumulation of CD34(+) HSC in MI hearts infused with stem cells. Angiogenesis was significantly enhanced in CD34(+) HSC-treated heart as determined by vascular density per area. Furthermore, histopathological examination revealed that the retained cardiac function observed in CD34(+) HSC-treated mice was associated with decreased ventricular fibrosis. These results suggest that peripheral administration of armed CD34(+) HSC results in localization of CD34(+) HSC to injured myocardium and restores myocardial function.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3792713PMC
http://dx.doi.org/10.1152/japplphysiol.01109.2007DOI Listing

Publication Analysis

Top Keywords

cd34+ hsc
28
armed cd34+
16
human cd34+
12
stem cells
12
ventricular function
12
cd34+
11
targeting human
8
cd34+ hematopoietic
8
hematopoietic stem
8
bispecific antibody
8

Similar Publications

Background/objectives: A specialized microenvironment in the bone marrow, composed of stromal cells including mesenchymal stem cells (MSCs), supports hematopoietic stem cell (HSC) self-renewal, and differentiation bands play an important role in leukemia development and progression. The reciprocal direct interaction between MSCs and CD34 HSCs under physiological and pathological conditions is yet to be fully characterized.

Methods: Here, we established a direct co-culture model between MSCs and CD34 HSCs or MSCs and acute myeloid leukemia cells (THP-1, Molm-13, and primary cells from patients) to study heterocellular communication.

View Article and Find Full Text PDF

An Injectable Solution for Preservation of Hematopoietic Stem and Progenitors Cells in Hypothermic Condition.

Stem Cell Rev Rep

December 2024

Etablissement Français du Sang Nouvelle Aquitaine, CS21010, Bordeaux-Cedex, 3035, France.

To ensure the preservation of functional hematopoietic stem cells (HSC) and committed progenitor cells (HPC) at + 4 °C in ex vivo expanded cord blood cell products during worldwide transportation and subsequent infusion-without the need for washing and cell concentration-we developed a conservation medium called Stabilizer of Expanded Cells (SEC), composed exclusively of injectable pharmacological products. The in vivo engraftment assay in immunodeficient mice was used to detect primitive HSCs before and after preservation at + 4 °C. In some experiments, a complex phenotype based on CD34, CD38, and CD133 expression was utilized for this purpose.

View Article and Find Full Text PDF

Lentiviral Gene Therapy with CD34+ Hematopoietic Cells for Hemophilia A.

N Engl J Med

December 2024

From the Department of Hematology, Christian Medical College Vellore, Ranipet Campus, Vellore, India (A.S., A.A., F.A., U.K., S.S., A.K., A.S.S., A.J., N.K., C.B., K.M.L., R.V.S.); Center for Stem Cell Research Unit of inStem, Bengaluru, Christian Medical College Vellore, Vellore, India (A.S., G.S., M.S., R.V.S.); the Department of Immunohematology and Transfusion Medicine, Christian Medical College Vellore, Town Campus, Vellore, India (T.G., R.G.D., S.C.N.); the Department of Cytogenetics, Christian Medical College Vellore, Vellore, India (V.M.S.); Expression Therapeutics, Tucker, GA (H.C.B., G.D., P.L., C.B.D., T.S.); and Emory University School of Medicine, Children's Healthcare of Atlanta, Atlanta (P.L., C.B.D., T.S.).

Background: Severe hemophilia A is managed with factor VIII replacement or hemostatic products that stop or prevent bleeding. Data on gene therapy with hematopoietic stem-cell (HSC)-based expression of factor VIII for the treatment of severe hemophilia A are lacking.

Methods: We conducted a single-center study involving five participants 22 to 41 years of age with severe hemophilia A without factor VIII inhibitors.

View Article and Find Full Text PDF

The insufficient number of hematopoietic stem cells (HSCs) poses a significant challenge for successful hematopoietic stem cell transplantation and gene-based therapies. To address this issue, ex vivo expansion of HSCs has been developed, improving engraftment and reducing morbidity risks in hematological disorders. Small molecules, known as stem cell agonists (SCAs), have been utilized to promote HSC expansion and have been implemented in clinical trials.

View Article and Find Full Text PDF

Lymphoma and plasma cell disorders are the most common indications for autologous hematopoietic stem cell (HSC) transplantation. We conducted a prospective multicenter study with the aim of testing the feasibility of plerixafor (PLX) in combination with R-DHAP and G-CSF in 37 patients with relapsed refractory diffuse large B-cell lymphoma (R/R DLBCL) in order to collect a large number of HSC with a goal of transplantation. After R-DHAP, daily monitoring of peripheral blood CD34 + cells by flow cytometry was performed starting on day + 13.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!