Does NO play a role in cytokinin signal transduction?

FEBS Lett

Institute of Plant Physiology, Russian Academy of Sciences, Botanicheskaya 35, 127276 Moscow, Russia.

Published: March 2008

We tested the hypothesis that nitric oxide (NO) plays an important role in cytokinin signaling. Inhibitors of NO-synthase (NOS), L-NMMA and L-NAME, inhibited the expression of the GUS gene controlled by the cytokinin-responsive ARR5 promoter. However, the inactive analogues D-NMMA and D-NAME had a similar inhibitory activity. NO donors alone did not induce GUS activity and the NO scavenger cPTIO did not prevent the induction of the ARR5 promoter by cytokinin. Northern blot analysis of the P(ARR5)::GUS transgene and the host ARR5 gene revealed that cytokinin-induced transcript accumulation was not altered by NMMA-treatment, indicating that NMMA acts post-transcriptionally. Together the data show that NO has no direct role in eliciting the primary cytokinin response in plants.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.febslet.2008.02.016DOI Listing

Publication Analysis

Top Keywords

role cytokinin
8
arr5 promoter
8
play role
4
cytokinin
4
cytokinin signal
4
signal transduction?
4
transduction? tested
4
tested hypothesis
4
hypothesis nitric
4
nitric oxide
4

Similar Publications

Reducing endogenous CK levels accelerates fruit ripening in tomato by regulating ethylene biosynthesis and signalling pathway. Tomato is a typical climacteric fruit and is recognized as one of the most important horticultural crops globally. The ripening of tomato fruits is a complex process, highly regulated by phytohormones.

View Article and Find Full Text PDF

Spatial-Temporal Dynamics of Adventitious Roots of Pers. Seedlings Grown with Auxin/Cytokinin.

Life (Basel)

January 2025

Biotecnología y Bioingeniería, Centro de Investigación y de Estudios Avanzados del IPN, Avenida Instituto Politécnico Nacional 2508, Colonia San Pedro Zacatenco, Ciudad de México C.P. 07360, Mexico.

The spatial-temporal dynamics of an in vitro radicular system of for the development of rhizofiltration technologies, with the potential for use as a phytotreatment of eutrophicated water, were studied for the first time in the roots of seedlings and in rhizotron systems. The effect of indole-3-acetic acid (AIA) in combination with kinetin (CIN) or 6-benzylaminopurine (BAP) on seedlings cultivated in the light and dark in three radicular systems and in a rhizotrophic regime for the screening of dynamic rhizogenic lines, by weekly allometric measurements of the length and number of roots, were studied. Inhibition of the elongation and branching velocities of roots by BAP and light was observed but CIN increased elongation and branching.

View Article and Find Full Text PDF

Characteristics and Functions of , a Terpenoid Synthesis-Related Gene in Lamb.

Int J Mol Sci

January 2025

State Key Laboratory of Tree Genetics and Breeding, Nanjing Forestry University, Nanjing 210037, China.

Terpenoids, abundant and structurally diverse secondary metabolites in plants, especially in conifer species, play crucial roles in the plant defense mechanism and plant growth and development. In , terpenoids' biosynthesis relies on both the mevalonate (MVA) pathway and the 2-methyl-D-erythritol-4-phosphate (MEP) pathway, with 1-hydroxy-2-methyl-2-(E)-butenyl-4-diphosphate synthase (HDS) catalyzing the sixth step of the MEP pathway. In this study, we cloned and conducted bioinformatics analysis of the gene from .

View Article and Find Full Text PDF

Salt stress inhibits rice seed germination. Strigolactone (GR24) plays a vital role in enhancing plant tolerance against salt stress. However, GR24's impact on the metabolism of stored substances and endogenous hormones remains unclear.

View Article and Find Full Text PDF

Background: Due to the totipotency of plant cells, which allows them to reprogram from a differentiated to a dedifferentiated state, plants exhibit a remarkable regenerative capacity, including under in vitro culture conditions. When exposed to plant hormones, primarily auxins and cytokinins, explant cells cultured in vitro can undergo differentiation through callus formation. Protoplast culture serves as a valuable research model for studying these processes in detail.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!