AI Article Synopsis

Article Abstract

Coronary artery aneurysms (CAA) are rare but potentially fatal pathologies. This case was referred to our Unit after occasional echocardiographic finding of an intracardiac mass. A new detailed transthoracic echocardiogram was decisive for a diagnosis of a large CAA of the right coronary artery, compressing and dislocating the right atrium. Transesophageal echocardiography was not performed because of the data obtained. The diagnosis was confirmed by cardiac catheterization. The patient was managed with a surgical procedure.

Download full-text PDF

Source
http://dx.doi.org/10.1111/j.1540-8191.2007.00500.xDOI Listing

Publication Analysis

Top Keywords

coronary artery
12
artery aneurysms
8
transthoracic echocardiography
4
echocardiography adequate
4
adequate diagnosis
4
diagnosis coronary
4
aneurysms coronary
4
aneurysms caa
4
caa rare
4
rare fatal
4

Similar Publications

Feasibility of on-site CT-FFR analysis on cardiac photon-counting CT in evaluation of hemodynamically significant stenosis in comparison to invasive catheter angiography.

Eur J Radiol

January 2025

Department of Radiology and Nuclear Medicine, University Medical Center Mannheim, Heidelberg University, Theodor-Kutzer-Ufer 1-3, 68167 Mannheim, Germany. Electronic address:

Objectives: Coronary CT angiography (CCTA) is an excellent tool in ruling out coronary artery disease (CAD) but tends to overestimate especially highly calcified plaques. To reduce diagnostic invasive catheter angiographies (ICA), current guidelines recommend CT-FFR to determine the hemodynamic significance of coronary artery stenosis. Photon-Counting Detector CT (PCCT) revolutionized CCTA and may improve CT-FFR analysis in guiding patients.

View Article and Find Full Text PDF

Aims: To identify differences in CT-derived perivascular (PVAT) and epicardial adipose tissue (EAT) characteristics that may indicate inflammatory status differences between post-treatment acute myocardial infarction (AMI) and stable coronary artery disease (CAD) patients.

Methods And Results: A cohort of 205 post-AMI patients (age 59.8±9.

View Article and Find Full Text PDF

This paper proposes the use of artificial intelligence techniques, specifically the nnU-Net convolutional neural network, to improve the identification of left ventricular walls in images of myocardial perfusion scintigraphy, with the objective of improving the diagnosis and treatment of coronary artery disease. The methodology included data collection in a clinical environment, followed by data preparation and analysis using the 3D Slicer Platform for manual segmentation, and subsequently, the application of artificial intelligence models for automated segmentation, focusing on the efficiency of identifying the walls of the left ventricular. A total of 83 clinical routine exams were collected, each exam containing 50 slices, which is 4,150 images.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!