A novel bacterial consortium (TJ-1), which could decolorize Acid Orange 7 (AO7) and manyother azo dyes, was developed. In TJ-1 three bacterial strains were identified as Aeromonas caviae, Proteus mirabilis and Rhodococcus globerulus by 16S rRNA gene sequence analysis. AO7 decolorization was significantly higher with the use of consortium as compared to the use of individual strains, indicating complementary interactions among these strains. AO7 decolorization was observed under microaerophilic condition in the presence of organic carbon source. Either yeast extract (YE) alone or a combination of YE and glucose resulted in much higher decolorization of AO7 as compared to glucose alone, peptone or starch. Kinetic studies with different initial AO7 concentrations showed that more than 90% decolorization could be achieved even at 200mg/l within 16h. Fed-batch studies showed that AO7 decolorization required 10h during the first cycle and 5h in the second and third cycles, showing that bacterial cells could be used for multiple cycles. The consortium also decolorized fifteen other azo dyes individually as well as a simulated wastewater containing a mixture of all the sixteen azo dyes, thus, conferring the possibility of application of TJ-1 for the treatment of industrial wastewaters.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.biortech.2007.12.074DOI Listing

Publication Analysis

Top Keywords

azo dyes
16
ao7 decolorization
12
novel bacterial
8
bacterial consortium
8
consortium tj-1
8
ao7
6
decolorization
5
isolation identification
4
identification application
4
application novel
4

Similar Publications

Gold nanoparticles supported on aldehyde-functionalized chitin nanocrystals as efficient catalysts in environmental catalysis.

Int J Biol Macromol

January 2025

Department of Polymer Materials and Engineering, College of Materials and Metallurgy, Guizhou University, Guiyang 550025, China. Electronic address:

Gold nanoparticles (AuNPs) with ultra-small size anchored onto support materials is highly desired towards good catalytic performance. In this study, aldehyde-functionalized chitin nanocrystals (ChNCs-PVMA) are prepared by surface-initiated electron transfer atom transfer radical polymerization (SI-ARGET ATRP) with vanillin methacrylate (VMA) as a functional monomer, which are used as reductant, stabilizer and support for the fabrication of AuNPs through an environmentally friendly process that eliminates the need for any additional reducing agents. The abundant aldehyde groups of the prepared ChNCs-PVMA are crucial to achieve ultra-small AuNPs with average size of 5.

View Article and Find Full Text PDF

This study demonstrated a novel approach to accurately estimate 5-day biochemical oxygen demand (BOD) in textile wastewater using a microbial consortium from food processing wastewater fixed on coconut fibers. Although glucose-glutamic acid (GGA) has been widely known as the most preferred substrates for microbial respiration, its calibration surprisingly resulted in an overestimation of BOD in textile wastewater due to its lower utilization rate compared to that of textile wastewater. After being adapted with a new nutrient environment composed of GGA and textile wastewater, the adapted packed-bed bioreactors (PBBRs) was capable of accurate estimation of BOD in textile wastewater using GGA standard solution.

View Article and Find Full Text PDF

Biodegradation of azo dyes by Aspergillus flavus and its bioremediation potential using seed germination efficiency.

BMC Microbiol

January 2025

Department of Biological and Geological Sciences, Faculty of Education, Ain Shams University, Cairo, 11341, Egypt.

The worldwide textile industry extensively uses azo dyes, which pose serious health and environmental risks. Effective cleanup is necessary but challenging. Developing bioremediation methods for textile effluents will improve color removal efficiency.

View Article and Find Full Text PDF

Objectives: This review examines how food additives impact the central nervous system (CNS) focusing on the effects of sugars, artificial sweeteners, colorings, and preservatives.

Methods: A literature search of PubMed, Scopus, and Web of Science was conducted for studies published since 2010. Key search terms included, food additives, neurotoxicity, cognition, and behavior.

View Article and Find Full Text PDF

The discovery of a multi-target scaffold in medicinal chemistry is an important goal for the development of new drugs with different biological effects. Azobenzene is one of the frameworks in medicinal chemistry used for its simple synthetic methods and for the possibility to obtain a great variety of derivatives by simple chemical modifications or substitutions. Phenyldiazenyl-containing compounds show a wide spectrum of pharmacological activities, such as antimicrobial, anti-inflammatory, anti-neurodegenerative, anti-cancer, and anti-enzymatic.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!