Density functional theory (DFT) computations in solvent have been used to investigate the mechanism of anchimeric assistance (by a vicinal amide group) in the acid-induced ether cleavage. The calculations were carried out at the B3LYP/6-31G* level of theory via full geometry optimizations within the IEF-PCM continuum solvent model. Two different mechanisms have been investigated here that were previously hypothesized for the rate-determining step of this process: the first (mechanism A1) involves a protonated amide and an ethereal oxygen as the nucleophile, while the second (mechanism A2) involves protonation of the ethereal oxygen followed by a nucleophilic attack of the amide. Computations clearly show that the second (involving protonation of the less basic site) is the most favorite route and leads to the formation of an oxazolidinic intermediate that triggers ether hydrolysis. Results are produced that are in excellent agreement with the experiments, and a rationale for them is provided, which represents a general interpretative basis for similar anchimerically assisted processes, such as the ones characterizing the glycosidic activity of two very important classes of enzymes: beta-hexosaminidases and O-GlcNAcases.

Download full-text PDF

Source
http://dx.doi.org/10.1021/jo701394zDOI Listing

Publication Analysis

Top Keywords

vicinal amide
8
amide group
8
anchimeric assistance
8
ether cleavage
8
mechanism involves
8
ethereal oxygen
8
computational dft
4
dft investigation
4
investigation vicinal
4
amide
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!