Chiral amino thioacetate ligands were prepared from the corresponding amino alcohols and used as catalysts for enantioselective aryl transfer reaction. The amino thioacetates were remarkably superior to the corresponding amino alcohols. Low catalyst loadings of only 1-2.5 mol % were sufficient to achieve excellent enantioselectivity as well as high conversion in short reaction time. The results reveal that the thioacetoxy moiety of the amino thioacetates has a surprisingly beneficial effect in enhancing the asymmetric induction.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/ol8001249 | DOI Listing |
J Am Chem Soc
January 2025
Shenzhen Grubbs Institute and Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, China.
Axially chiral -VQMs have been extensively investigated as key intermediates to approach miscellaneous chiral structures. By sharp contrast, their structural isomers -VQMs have not been previously documented. The major reason, which results in the significant delay, may ascribe to the inherent challenges in the enantioselective activation of alkynes in a remote manner.
View Article and Find Full Text PDFAcc Chem Res
January 2025
State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory of Chemical Biology of Fujian Province, College of Chemistry and Chemical Engineering, and Discipline of Intelligent Instrument and Equipment, Xiamen University, Xiamen 361005, P. R. China.
ConspectusMolecular photoelectrocatalysis, which combines the merits of photocatalysis and organic electrosynthesis, including their green attributes and capacity to offer novel reactivity and selectivity, represents an emerging field in organic chemistry that addresses the growing demands for environmental sustainability and synthetic efficiency. This synergistic approach permits access to a wider range of redox potentials, facilitates redox transformations under gentler electrode potentials, and decreases the use of external harsh redox reagents. Despite these potential advantages, this area did not receive significant attention until 2019, when we and others reported the first examples of modern molecular photoelectrocatalysis.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
January 2025
Zhejiang Uiversity, Chemistry, 866 Yuhangtang Road, 310058, Hangzhou, CHINA.
Heck silylation of unactivated alkenes is an efficient strategy for the synthesis of useful organosilicon compounds. However, extensive efforts have been dedicated to only achieving achiral molecules. Herein, a highly regio- and enantioselective cobalt-catalyzed Heck silylation of unactivated alkenes with hydrosilanes is reported for the first time, providing access to axially chiral alkenes in good to excellent yields with 87-98% ee.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
January 2025
Shanghai Inst Org Chem, State Key Lab Organometallic Chem, 345 Lingling Lu, 200032, Shanghai, CHINA.
Rhodium-catalyzed regio- and enantioselective allylic arylation of racemic alkyl- and aryl- substituted allylic carbonates with arylboronic acids using commercially available BIBOP ligand is reported. This reaction proceeds at room temperature without base or other additive to deliver allylic arylation products in excellent yields, regio- and enantioselectivity (up to 95% yield, >20:1 b/l, >99% ee). Rh/BIBOP is disclosed as an efficient catalytic system for allylic substitution reaction.
View Article and Find Full Text PDFOrg Lett
January 2025
College of Materials Science and Engineering, Huaqiao University, Xiamen 361021, China.
The enantioselective synthesis of P(V)-stereogenic compounds has emerged as an interesting research topic primarily due to their significant biological activity and broad application prospects. Herein, we disclose a method for the construction of P(V)-stereogenic compounds from prochiral phosphinamides and aryl iodides via palladium- and chiral norbornene-catalyzed desymmetric annulation. The P(V)-stereogenic compounds were formed with a broad scope with excellent enantiomeric excesses.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!