Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Xylella fastidiosa is a xylem-limited bacterium that causes citrus variegated chlorosis (CVC), Pierce's disease of grapevine, and leaf scald of coffee and plum and many other plant species. This pathogen is vectored by sharpshooter leafhoppers (Hemiptera: Cicadellidae: Cicadellinae) and resides in the insect foregut. Scanning electron microscopy was used to determine the retention sites of X. fastidiosa for the most common vector species in Brazilian citrus groves, Acrogonia citrina, Bucephalogonia xanthophis, Dilobopterus costalimai, and Oncometopia facialis. After a 48-h acquisition access period on infected citrus or plum, adult sharpshooters were kept on healthy citrus seedlings for an incubation period of 2 weeks to allow for bacterial multiplication. Then the vector heads were incubated for 24 h in a fixative and transferred into a cryoprotector liquid. Bacterial rod cells exhibiting similar X. fastidiosa morphology were found laterally attached to different regions inside the cibarial pump chamber (longitudinal groove, lateral surface, cibarial diaphragm and apodemal groove) of A. citrina, O. facialis, and D. costalimai, and polarly attached to the precibarium channel of O. facialis. Polymerase chain reactions of vector's heads were positive for the presence of X. fastidiosa. No X. fastidiosa-like cells were detected in B. xanthophis. A different type of rod-shaped bacterium was found on B. xanthophis cibarium chamber and images suggest that the cibarium wall was degraded/digested by these bacteria. Colonization patterns of X. fastidiosa in their vectors are fundamental aspects to be explored toward understanding acquisition, adhesion, and transmission mechanisms for development of X. fastidiosa control strategies.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00284-008-9119-7 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!