The progress on genetic analysis of nasopharyngeal carcinoma.

Comp Funct Genomics

Center for Molecular Biology of Oral Diseases, College of Dentistry, Graduate College, UIC Cancer Center, University of Illinois at Chicago, Chicago, IL 60612, USA.

Published: June 2010

Nasopharyngeal carcinoma (NPC) is a rare malignancy in most parts of the world, but is one of the most common cancers in Southeast Asia. Both genetic and environmental factors contribute to the tumorigenesis of NPC, most notably the consumption of certain salted food items and Epstein-Barr virus infection. This review will focus on the current progress of the genetic analysis of NPC (genetic susceptibilities and somatic alterations). We will review the current advances in genomic technologies and their shaping of the future direction of NPC research.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2233780PMC
http://dx.doi.org/10.1155/2007/57513DOI Listing

Publication Analysis

Top Keywords

progress genetic
8
genetic analysis
8
nasopharyngeal carcinoma
8
analysis nasopharyngeal
4
carcinoma nasopharyngeal
4
npc
4
carcinoma npc
4
npc rare
4
rare malignancy
4
malignancy parts
4

Similar Publications

Background: /aims. Pseudoxanthoma Elasticum (PXE, OMIM 264800) is an autosomal, recessive, metabolic disorder characterized by progressive ectopic calcification in the skin, the vasculature and Bruch's membrane. Variants in the ABCC6 gene are associated with low plasma pyrophosphate (PPi) concentration.

View Article and Find Full Text PDF

Background: Crossover interactions stemming from phenotypic plasticity complicate selection decisions when evaluating hybrid maize with superior grain yield and consistent performance. Consequently, a two-year, region-wide investigation of 45 hybrids maize across Nepal was performed with the aim of disclosing both site and wide adapted hybrids. Utilizing an innovative "ProbBreed" package, based on Bayesian probability analysis of randomized complete block designs with three replicated trials at each station, this study substantively streamlines hybrids maize selection.

View Article and Find Full Text PDF

A high-calorie diet and lack of exercise are the most important risk factors contributing to metabolic dysfunction-associated steatotic liver disease (MASLD) initiation and progression. The precise molecular mechanisms of mitochondrial function alteration during MASLD development remain to be fully elucidated. In this study, a total of 60 male C57BL/6J mice were maintained on a normal or amylin liver NASH (AMLN) diet for 6 or 10 weeks.

View Article and Find Full Text PDF

Hsa_circ_0001304 promotes vascular neointimal hyperplasia accompanied by autophagy activation.

Commun Biol

January 2025

Department of Biochemistry and Molecular Biology, Key Laboratory of Neural and Vascular Biology, Ministry of Education, Hebei Key Laboratory of Forensic Medicine, Hebei Medical University, Shijiazhuang, 050017, China.

Aberrant autophagy in vascular smooth muscle cells (VSMCs) is associated with the progression of vascular remodeling diseases caused by neointimal hyperplasia. Platelet-derived growth factor-BB (PDGF-BB)-induced vascular remodeling is accompanied by autophagy activation, however, the involvement of circular RNAs (circRNAs) remains unclear. Here, we show the role of PDGF-BB-regulated hsa_circ_0001304 (circ-1304) in neointimal hyperplasia and its potential involvement in VSMC autophagy, while also elucidating the potential mechanisms.

View Article and Find Full Text PDF

Prostate cancer presents a major health issue, with its progression influenced by intricate molecular factors. Notably, the interplay between miRNAs and changes in transcriptomic patterns is not fully understood. Our study seeks to bridge this knowledge gap, employing computational techniques to explore how miRNAs and transcriptomic alterations jointly regulate the development of prostate cancer.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!