Ethanol consumption potentiates dopaminergic signaling that is partially mediated by the D(1) dopamine receptor; however, the mechanism(s) underlying ethanol-dependent modulation of D(1) signaling is unclear. We now show that ethanol treatment of D(1) receptor-expressing cells decreases D(1) receptor phosphorylation and concurrently potentiates dopamine-stimulated cAMP accumulation. Protein kinase C (PKC) inhibitors mimic the effects of ethanol on D(1) receptor phosphorylation and dopamine-stimulated cAMP levels in a manner that is non-additive with ethanol treatment. Ethanol was also found to modulate specific PKC activities as demonstrated using in vitro kinase assays where ethanol treatment attenuated the activities of lipid-stimulated PKCgamma and PKCdelta in membrane fractions, but did not affect the activities of PKCalpha, PKCbeta(1), or PKCvarepsilon. Importantly, ethanol treatment potentiated D(1) receptor-mediated DARPP-32 phosphorylation in rat striatal slices, supporting the notion that ethanol enhances D(1) receptor signaling in vivo. These findings suggest that ethanol inhibits the activities of specific PKC isozymes, resulting in decreased D(1) receptor phosphorylation and enhanced dopaminergic signaling.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1038/npp.2008.16 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!