Whole body biophotonic imaging (BPI) is a technique that has contributed significantly to the way researchers study bacterial pathogens and develop pre-clinical treatments to combat their ensuing infections in vivo. Not only does this approach allow disease profiles and drug efficacy studies to be conducted non-destructively in live animals over the entire course of the disease, but in many cases, it enables investigators to observe disease profiles that could otherwise easily be missed using conventional methodologies. The principles of this technique are that bacterial pathogens engineered to express bioluminescence (visible light) can be readily monitored from outside of the living animal using specialized low-light imaging equipment, enabling their movement, expansion and treatment to be seen completely non-invasively. Moreover, because the same group of animals can be imaged at each time-point throughout the study, the overall number of animals used is dramatically reduced, saving lives, time, and money. Also, as each animal acts as its own control over time, the issues associated with animal-to-animal variation are circumvented, thus improving the quality of the biostatistical data generated. The ability to monitor infections in vivo in a longitudinal fashion is especially appealing to assess chronic infections such as those involving implanted devices. Typically, bacteria grow as biofilms on these foreign bodies and are reputably difficult to monitor with conventional methods. Because of the non-destructive and non-invasive nature of BPI, the procedure can be performed repeatedly in the same animal, allowing the biofilm to be studied in situ without detachment or disturbance. This ability not only allows unique patterns of disease relapse to be seen following termination of antibiotic therapy but also in vivo resistance development during prolonged treatment, both of which are common occurrences with device-related infections. This chapter describes the bioluminescent engineering of both Gram-positive and Gram-negative bacteria and overviews their use in device-associated infections in several anatomical sites in a variety of animal models.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/978-1-60327-032-8_18 | DOI Listing |
Elife
December 2024
Laboratory of Immunoregulation and Mucosal Immunology, VIB Center for Inflammation Research, Ghent, Belgium.
Since the precursor frequency of naive T cells is extremely low, investigating the early steps of antigen-specific T cell activation is challenging. To overcome this detection problem, adoptive transfer of a cohort of T cells purified from T cell receptor (TCR) transgenic donors has been extensively used but is not readily available for emerging pathogens. Constructing TCR transgenic mice from T cell hybridomas is a labor-intensive and sometimes erratic process, since the best clones are selected based on antigen-induced CD69 upregulation or IL-2 production in vitro, and TCR chains are polymerase chain reaction (PCR)-cloned into expression vectors.
View Article and Find Full Text PDFPLoS Pathog
January 2025
The Westmead Institute for Medical Research, Westmead, New South Wales, Australia.
HIV infection implicates a spectrum of tissues in the human body starting with viral transmission in the anogenital tract and subsequently persisting in lymphoid tissues and brain. Though studies using isolated cells have contributed significantly towards our understanding of HIV infection, the tissue microenvironment is characterised by a complex interplay of a range of factors, all of which can influence the course of infection but are otherwise missed in ex vivo studies. To address this knowledge gap, it is necessary to investigate the dynamics of infection and the host immune response in situ using imaging-based approaches.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
January 2025
Cellular and Structural Physiology Laboratory, Advanced Research Initiative, Institute of Integrated Research, Institute of Science Tokyo, Bunkyo-ku, Tokyo 113-8510, Japan.
Pathogen mutations present an inevitable and challenging problem for therapeutics and the development of mutation-tolerant anti-infective drugs to strengthen global health and combat evolving pathogens is urgently needed. While spike proteins on viral surfaces are attractive targets for preventing viral entry, they mutate frequently, making it difficult to develop effective therapeutics. Here, we used a structure-guided strategy to engineer an inhibitor peptide against the SARS-CoV-2 spike, called CeSPIACE, with mutation-tolerant and potent binding ability against all variants to enhance affinity for the invariant architecture of the receptor-binding domain (RBD).
View Article and Find Full Text PDFJ Biomed Mater Res B Appl Biomater
February 2025
Zoology Department, Faculty of Science, Al-Azhar University, Nasr City, Cairo, Egypt.
Schistosomiasis, caused by Schistosoma worms, is a major neglected tropical disease in Africa, this disease is ranked as second after malaria. Nanotechnology is important for treating schistosomiasis while minimizing chemotherapy side effects. The current investigate aimed to assess the effectiveness of biosynthesized zinc oxide nanoparticles (ZnO NPs), which were used for the first time in an attempt to find alternative treatment for schistosomiasis and synthesized by Origanum majorana, and to compare them with praziquantel (PZQ), the only chemical treatment approved by the World Health Organization.
View Article and Find Full Text PDFChem Biodivers
January 2025
Deraya University, Pharmacognosy, New Minia, New Minia, EGYPT.
Mucormycosis, a life-threatening fungal infection caused by Mucorales, affects immunocompromised patients, especially SARS-CoV-2 ones. Existing antifungal therapies, like amphotericin B, have serious health risks. The current study reviews the literature regarding an overview of SARS-CoV-2-associated mucormycosis, along with different terpenes from diverse edible sources such as basil, ginger, and clove, which are detected till June 2024.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!