Despite the importance of spike-timing regulation in network functioning, little is known about this regulation at the cellular level. In the Aplysia feeding network, we show that interneuron B65 regulates the timing of the spike initiation of phase-switch neurons B64 and cerebral-buccal interneuron-5/6 (CBI-5/6), and thereby determines the identity of the neuron that acts as a protraction terminator. Previous work showed that B64 begins to fire before the end of protraction phase and terminates protraction in CBI-2-elicited ingestive, but not in CBI-2-elicited egestive programs, thus indicating that the spike timing and phase-switching function of B64 depend on the type of the central pattern generator (CPG)-elicited response rather than on the input used to activate the CPG. Here, we find that CBI-5/6 is a protraction terminator in egestive programs elicited by the esophageal nerve (EN), but not by CBI-2, thus indicating that, in contrast to B64, the spike timing and protraction-terminating function of CBI-5/6 depends on the input to the CPG rather than the response type. Interestingly, B65 activity also depends on the input in that B65 is highly active in EN-elicited programs, but not in CBI-2-elicited programs independent of whether the programs are ingestive or egestive. Notably, during EN-elicited egestive programs, hyperpolarization of B65 delays the onset of CBI-5/6 firing, whereas in CBI-2-elicited ingestive programs, B65 stimulation simultaneously advances CBI-5/6 firing and delays B64 firing, thereby substituting CBI-5/6 for B64 as the protraction terminator. Thus, we identified a neural mechanism that, in an input-dependent manner, regulates spike timing and thereby the functional role of specific neurons.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6671438PMC
http://dx.doi.org/10.1523/JNEUROSCI.4755-07.2008DOI Listing

Publication Analysis

Top Keywords

spike timing
16
protraction terminator
12
egestive programs
12
regulates spike
8
cbi-2-elicited ingestive
8
depends input
8
cbi-5/6 firing
8
programs
7
b64
6
cbi-5/6
6

Similar Publications

Article Synopsis
  • Neurons communicate information through variable action potentials that can differ significantly with each stimulus repetition.
  • The study investigates the reliability of cortical neurons when stimulated with simulated synaptic inputs and finds that parvalbumin+ (PV) interneurons exhibit high spiking reliability compared to excitatory neurons.
  • This high reliability in PV interneurons enables precise inhibition of other neurons, while the variability in excitatory neurons allows for better integration of synaptic inputs, ultimately influencing how information is processed in the brain.
View Article and Find Full Text PDF

The hippocampal CA3 subregion is a densely connected recurrent circuit that supports memory by generating and storing sequential neuronal activity patterns that reflect recent experience. While theta phase precession is thought to be critical for generating sequential activity during memory encoding, the circuit mechanisms that support this computation across hippocampal subregions are unknown. By analyzing CA3 network activity in the absence of each of its theta-modulated external excitatory inputs, we show necessary and unique contributions of the dentate gyrus (DG) and the medial entorhinal cortex (MEC) to phase precession.

View Article and Find Full Text PDF

Epilepsy, a neurological disorder characterized by recurrent unprovoked seizures, significantly impacts patient quality of life. Current classification methods focus primarily on clinical observations and electroencephalography (EEG) analysis, often overlooking the underlying dynamics driving seizures. This study uses surface EEG data to identify seizure transitions using a dynamical systems-based framework-the taxonomy of seizure dynamotypes-previously examined only in invasive data.

View Article and Find Full Text PDF

Parkinson's disease (PD) is a neurodegenerative disease affecting millions of people around the world. Conventional PD detection algorithms are generally based on first and second-generation artificial neural network (ANN) models which consume high energy and have complex architecture. Considering these limitations, a time-varying synaptic efficacy function based leaky-integrate and fire neuron model, called SEFRON is used for the detection of PD.

View Article and Find Full Text PDF

Alcohol use disorder (AUD) is a chronic relapsing brain disorder characterized by an impaired ability to stop or control alcohol consumption despite adverse social, occupational, or health consequences. AUD affects nearly one-third of adults at some point during their lives, with an associated cost of approximately $249 billion annually in the U.S.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!