Direct-infusion mass spectrometry (MS) was applied to study the metabolic effects of the symbiosis between the endophytic fungus Neotyphodium lolii and its host perennial ryegrass (Lolium perenne) in three different tissues (immature leaf, blade, and sheath). Unbiased direct-infusion MS using a linear ion trap mass spectrometer allowed metabolic effects to be determined free of any preconceptions and in a high-throughput fashion. Not only the full MS(1) mass spectra (range 150-1,000 mass-to-charge ratio) were obtained but also MS(2) and MS(3) product ion spectra were collected on the most intense MS(1) ions as described previously (Koulman et al., 2007b). We developed a novel computational methodology to take advantage of the MS(2) product ion spectra collected. Several heterogeneous MS(1) bins (different MS(2) spectra from the same nominal MS(1)) were identified with this method. Exploratory data analysis approaches were also developed to investigate how the metabolome differs in perennial ryegrass infected with N. lolii in comparison to uninfected perennial ryegrass. As well as some known fungal metabolites like peramine and mannitol, several novel metabolites involved in the symbiosis, including putative cyclic oligopeptides, were identified. Correlation network analysis revealed a group of structurally related oligosaccharides, which differed significantly in concentration in perennial ryegrass sheaths due to endophyte infection. This study demonstrates the potential of the combination of unbiased metabolite profiling using ion trap MS and advanced data-mining strategies for discovering unexpected perturbations of the metabolome, and generating new scientific questions for more detailed investigations in the future.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2287329 | PMC |
http://dx.doi.org/10.1104/pp.107.112458 | DOI Listing |
J Exp Bot
January 2025
Biological Sciences, School of Natural Sciences, University of Tasmania, Hobart, Tas. 7001 Australia.
Elevated atmospheric CO2 (e[CO2]) often enhances plant photosynthesis and improves water status. However, the effects of e[CO2] vary significantly and are believed to be influenced by water availability. With the future warmer climate expected to increase the frequency and severity of extreme rainfall, the response of plants to e[CO2] under changing precipitation patterns remains uncertain.
View Article and Find Full Text PDFAnimals (Basel)
December 2024
Agriculture Victoria Research, Department of Energy, Environment and Climate Action, Ellinbank, Victoria 3821, Australia.
This experiment determined the effects of two different starch sources when offered twice a day to cows during the early postpartum period (1 to 23 d postpartum, treatment period) on dry matter intake (DMI), feeding behavior, and milk production. The subsequent effects on milk production in the carryover period (24 to 72 d) where cows received a common diet (grazed perennial ryegrass pasture plus concentrate supplements) were also measured. Thirty-two multiparous dairy cows were offered concentrate feed (8 kg DM/d) containing 5 kg DM of crushed wheat grain or ground corn grain (7 h in vitro starch digestibility of 65.
View Article and Find Full Text PDFBMC Plant Biol
December 2024
State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, Center for Grassland Microbiome, Engineering Research Center of Grassland Industry, Ministry of Education, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730000, P.R. China.
Animal
November 2024
Poznań University of Life Sciences, Department of Animal Nutrition, Wołyńska 33, 60-637 Poznań, Poland. Electronic address:
Greenhouse gas (GHG) emissions from livestock ruminants, particularly methane (CH), nitrous oxide, and indirectly ammonia (NH) significantly contribute to climate change and global warming. Conventional monoculture swards for cattle feeding, such as perennial ryegrass or Italian ryegrass, usually require substantial fertiliser inputs. Such management elevates soil mineral nitrogen levels, resulting in GHG emissions and potential water contamination.
View Article and Find Full Text PDFJ Dairy Sci
December 2024
Department of Animal and Aquacultural Sciences, Norwegian University of Life Sciences, PO Box 5003, 1432 Ås, Norway. Electronic address:
The aim of this study was to examine how silages from different grassland species and harvesting frequencies affect feed intake, milk production, and methane (CH) emission in dairy cows. We hypothesized that cows consuming silages of more frequent harvest, grass species with greater organic matter digestibility and legumes with lower NDFom concentration would have greater silage dry matter intake and milk yield and thereby lower CH yield and intensity. Forty Norwegian Red cows were allocated to 5 treatments in a cyclic changeover design with 4 21-d periods (14 d of adaptation, 7 d of data collection).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!