We have shown previously that extracellular cysteine is necessary for cellular responses to S-nitrosoalbumin. In this study we have investigated mechanisms involved in accumulation of extracellular cysteine outside vascular smooth muscle cells and characterized the role of cystine-cysteine release in transfer of nitric oxide (NO)-bioactivity. Incubation of cells with cystine led to cystine uptake, reduction, and cysteine release. The process was inhibitable by extracellular glutamate, suggesting a role for system x(c)(-) amino acid transporters. Smooth muscle cells express this transporter constitutively and induction of the light chain component (xCT) by either diethyl maleate or 3-morpholino-sydnonimine (SIN-1) led to glutamate-inhibitable cystine uptake and an increased rate of cysteine release from cells. Likewise, overexpression of xCT in smooth muscle cells or endothelial cells led to glutamate-inhibitable cysteine release. The resulting extracellular cysteine was found to be required for transfer of NO from extracellular S-nitrosothiols into cells via system L transporters leading to formation of cellular S-nitrosothiols. Cysteine release coupled to cystine uptake was also found to be required for cellular responses to S-nitrosoalbumin and facilitated S-nitrosoalbumin-mediated inhibition of epidermal growth factor signaling. These data show that xCT expression can constitute a cystine-cysteine shuttle whereby cystine uptake drives cysteine release. Furthermore, we show that extracellular cysteine provided by this shuttle mechanism is necessary for transfer of NO equivalents and cellular responses to S-nitrosoablumin.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1152/ajpcell.00411.2007 | DOI Listing |
Proc Natl Acad Sci U S A
January 2025
Department of Molecular & Cellular Biosciences, University of Cincinnati, Cincinnati, OH 45267.
TGFβ family ligands are synthesized as precursors consisting of an N-terminal prodomain and C-terminal growth factor (GF) signaling domain. After proteolytic processing, the prodomain typically remains noncovalently associated with the GF, sometimes forming a high-affinity latent procomplex that requires activation. For the TGFβ family ligand anti-Müllerian hormone (AMH), the prodomain maintains a high-affinity interaction with its GF that does not render it latent.
View Article and Find Full Text PDFRSC Chem Biol
December 2024
State Key Laboratory of Microbial Technology, Shandong University Qingdao 266237 China
Microorganisms serve as biological factories for the synthesis of nanomaterials such as CdS quantum dots. Based on the uniqueness of sp., a one-step route was explored to directly convert cadmium waste into CdS QDs using these bacteria.
View Article and Find Full Text PDFTetrahedron
February 2025
Department of Chemistry and Biochemistry, Baylor University, One Bear Place, No. 97348, Waco, Texas 76798-7348, United States.
Antibody-drug conjugates (ADCs) have advanced as a mainstay among the most promising cancer therapeutics, offering enhanced antigen targeting and encompassing wide diversity in their linker and payload components. Small-molecule inhibitors of tubulin polymerization have found success as payloads in FDA approved ADCs and represent further promise in next-generation, pre-clinical and developmental ADCs. Unique dual-mechanism payloads (previously designed and synthesized in our laboratories) function as both potent antiproliferative agents and promising vascular disrupting agents capable of imparting selective and effective damage to tumor-associated microvessels.
View Article and Find Full Text PDFJ Exp Bot
January 2025
Ministry of Education Key Laboratory of Molecular and Cellular Biology; Hebei Research Center of the Basic Discipline of Cell Biology; Hebei Collaboration Innovation Center for Cell Signaling and Environmental Adaptation; Hebei Key Laboratory of Molecular and Cellular Biology; College of Life Sciences, Hebei Normal University, 050024 Shijiazhuang, China.
A well-constructed pollen wall is essential for pollen fertility, which relies on the contribution of tapetum. Our results demonstrate an essential role of the tapetum-expressed protein phosphatase 2A (PP2A) B'α and B'β in pollen wall formation. The b'aβ double mutant pollen grains harbored sticky remnants and tectum breakages, resulting in failed release.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
January 2025
Fudan University, Macromolecular Science, No.220, Handan Road, Yangpu District, 200433, Shanghai, CHINA.
Hydrogen sulfide (H2S), as a gasotransmitter, not only plays a vital role in mediating many cellular activities but also manifests exciting applications in clinical therapy. However, one main obstacle in using H2S as a gaseous therapeutic agent is to realize on-demand storage and delivery of gas, and thus, it is of great importance to develop H2S-donating vehicle platforms. Although a variety of polymer-based gas-releasing carriers have been designed, almost all the systems are limited to spherical structures.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!