Background: Immunological tolerance in humans using anti-T-cell monoclonal antibodies (mAbs) may be hampered by a pro-inflammatory microenvironment. All clinical trials of such therapies in rheumatoid arthritis (RA), however, have selected patients with active disease at baseline. Concurrent neutralization of inflammation with a TNFalpha antagonist should maximize the potential of anti-T-cell mAbs to induce tolerance in RA.
Aim: To evaluate the safety of combining a TNFalpha antagonist and CD4 mAb in RA.
Design: An iterative pilot study focused on the safety of such combination therapy.
Methods: Eight poor prognosis, seropositive RA patients were treated with combined CD4 and TNFalpha blockade. Prolonged CD4 blockade was achieved with a humanized mAb, and TNFalpha blockade with a p55 TNF receptor fusion protein.
Results: There was a low incidence of classical first-dose reactions to the CD4 mAb, possibly reflecting concomitant TNFalpha blockade. An unusual anaphylactoid reaction was seen, however, and one patient developed a probable allergic reaction after several infusions. Skin rashes were common, as previously reported with CD4 mAb monotherapy. No serious infections were documented during follow-up, despite CD4+ lymphopenia in some patients. Most patients appeared to demonstrate improved RA disease control after the study. After 17-49 months after therapy, one patient was in remission, one remained off disease modifying anti-rheumatic drugs and five had stable disease, three on previously ineffective doses of methotrexate.
Conclusion: We report, for the first time in man, immunotherapy with a combination of an anti-cytokine and an anti-T-cell reagent. We witnessed an unusual first-dose reaction but there were no significant infectious complications.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1093/qjmed/hcn006 | DOI Listing |
Brain metastasis (BM) is a poor prognostic factor in cancer patients. Despite showing efficacy in many extracranial tumors, immunotherapy with anti-PD-1 monoclonal antibody (mAb) or anti-CTLA-4 mAb appears to be less effective against intracranial tumors. Promisingly, recent clinical studies have reported that combination therapy with anti-PD-1 and anti-CTLA-4 mAbs has a potent antitumor effect on BM, highlighting the need to elucidate the detailed mechanisms controlling the intracranial tumor microenvironment (TME) to develop effective immunotherapeutic strategies.
View Article and Find Full Text PDFFront Immunol
January 2025
Department of Hematology, Changhai Hospital, The Second Military Medical University, Shanghai, China.
Background: Chronic graft-versus-host disease (cGVHD) manifests with characteristics of autoimmune disease with organs attacked by pathogenic helper T cells. Recent studies have highlighted the role of T cells in cGVHD pathogenesis. Due to limited understanding of underlying mechanisms, preventing cGVHD after allogenic hematopoietic cell transplantation (HCT) has become a major challenge.
View Article and Find Full Text PDFCurr Pharm Biotechnol
January 2025
The Cancer Center, Union Hospital, Fujian Medical University, Fuzhou, Fujian, China.
Objective: Combining immune checkpoint inhibitors and antiangiogenic agents offers a promising strategy to counteract the cooperative promotion of solid tumor growth by immune checkpoints and intratumoral angiogenesis.
Methods: We investigated the potential of thalidomide (THD) and anti-PD-1 antibody (PD-1 mAb) in suppressing tumor growth, enhancing immunity, and inhibiting angiogenesis.
Results: THD exhibited regulatory effects on PD-1 in CD4+ T cells and PD-L1 in cancer cells, along with tumor growth inhibition in A549 and Lewis lung carcinoma (LLC) cell lines.
Nat Med
January 2025
Department of Medicine-Medical Oncology, University of Colorado Cancer Center, Denver, CO, USA.
Effective targeting of somatic cancer mutations to enhance the efficacy of cancer immunotherapy requires an individualized approach. Autogene cevumeran is a uridine messenger RNA lipoplex-based individualized neoantigen-specific immunotherapy designed from tumor-specific somatic mutation data obtained from tumor tissue of each individual patient to stimulate T cell responses against up to 20 neoantigens. This ongoing phase 1 study evaluated autogene cevumeran as monotherapy (n = 30) and in combination with atezolizumab (n = 183) in pretreated patients with advanced solid tumors.
View Article and Find Full Text PDFImmunology
February 2025
Immunobiology & Transplant Science Center, Department of Surgery, Houston Methodist Research Institute, Houston Methodist Hospital, Houston, Texas, USA.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!