Synapse elimination accompanies functional plasticity in hippocampal neurons.

Proc Natl Acad Sci U S A

Laboratories of Neurobiology and Signal Transduction, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, USA.

Published: February 2008

A critical component of nervous system development is synapse elimination during early postnatal life, a process known to depend on neuronal activity. Changes in synaptic strength in the form of long-term potentiation (LTP) and long-term depression (LTD) correlate with dendritic spine enlargement or shrinkage, respectively, but whether LTD can lead to an actual separation of the synaptic structures when the spine shrinks or is lost remains unknown. Here, we addressed this issue by using concurrent imaging and electrophysiological recording of live synapses. Slices of rat hippocampus were cultured on multielectrode arrays, and the neurons were labeled with genes encoding red or green fluorescent proteins to visualize presynaptic and postsynaptic neuronal processes, respectively. LTD-inducing stimulation led to a reduction in the synaptic green and red colocalization, and, in many cases, it induced a complete separation of the presynaptic bouton from the dendritic spine. This type of synapse loss was associated with smaller initial spine size and greater synaptic depression but not spine shrinkage during LTD. All cases of synapse separation were observed without an accompanying loss of the spine during this period. We suggest that repeated low-frequency stimulation simultaneous with LTD induction is capable of restructuring synaptic contacts. Future work with this model will be able to provide critical insight into the molecular mechanisms of activity- and experience-dependent refinement of brain circuitry during development.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2268595PMC
http://dx.doi.org/10.1073/pnas.0800027105DOI Listing

Publication Analysis

Top Keywords

synapse elimination
8
dendritic spine
8
spine
6
synaptic
5
synapse
4
elimination accompanies
4
accompanies functional
4
functional plasticity
4
plasticity hippocampal
4
hippocampal neurons
4

Similar Publications

Background: Microglia responses to Aβ and tau pathology and the dysregulation of the microglial role in synaptic function may determine the onset and course of Alzheimer's disease (AD). While significant work has been performed in mouse models, we still lack a complete understanding of physiological and pathological microglial states and functions in human AD brain.

Method: For immunoblotting of brain homogenates against multiple microglial markers, and flow cytometry (FC) analysis of synaptosomal fractions (SNAP25/CD47/Aβ(10G4)/phospho-tau(AT8)), 49 cryopreserved human parietal cortex samples were categorized into four groups: low pathology control (LPC), high Aβ control (HAC), high pathology control (HPC), and AD.

View Article and Find Full Text PDF

Background: The proteasome plays key roles in synaptic plasticity and memory by regulating protein turnover, quality control, and elimination of oxidized/misfolded proteins. Here, we investigate proteasome function and localization at synapses in Alzheimer's disease (AD) post-mortem brain tissue and in experimental models.

Method: We used primary hippocampal cultures, amyloid-β oligomers (AβO)-injected or transgenic animal models, and human brain tissue to determine brain proteasome function and subcellular localization.

View Article and Find Full Text PDF

Background: Some individuals can tolerate the presence of Alzheimer disease neuropathologic changes (ADNC) (e.g., plaques and tangles) without developing dementia.

View Article and Find Full Text PDF

Background: Condensed extracellular matrix structures called perineuronal nets (PNNs) preferentially enwrap the soma and stabilize proximal synapses of parvalbumin-expressing inhibitory neurons in the cortex, serving as a protective barrier against neurotoxins. While PNN structural integrity declines in the healthy aging brain, this reduction is exacerbated in Alzheimer's disease (AD). In the 5xFAD mouse model of amyloidosis, the elimination of microglia prevents reductions in PNN, suggesting microglia are responsible for the over-degradation of PNNs observed in AD.

View Article and Find Full Text PDF

Alterations of synaptic plasticity and brain oscillation are associated with autophagy induced synaptic pruning during adolescence.

Cogn Neurodyn

December 2025

College of Life Sciences and Key Laboratory of Bioactive Materials Ministry of Education, Nankai University, Tianjin, 300071 PR China.

Adolescent brain development is characterized by significant anatomical and physiological alterations, but little is known whether and how these alterations impact the neural network. Here we investigated the development of functional networks by measuring synaptic plasticity and neural synchrony of local filed potentials (LFPs), and further explored the underlying mechanisms. LFPs in the hippocampus were recorded in young (21 ~ 25 days), adolescent (1.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!