We report on the second prenatal diagnosis of familial paracentric inversion of the long arm of Y chromosome [46, X, inv(Y)(q11.2q12)]. The anomaly was detected through an amniocentesis performed because of advanced maternal age. The inversion has been detected by standard GTG banding methods and better characterized by FISH with painting probe and specific satellite probes DYZ1 and DYZ3. The inversion derived from phenotypically normal father. Pregnancy was uneventful and an healthy child was born. We discuss the issue concerning genetic prenatal counselling of this rare condition and we report the clinical follow up of the child.

Download full-text PDF

Source

Publication Analysis

Top Keywords

paracentric inversion
8
inversion review
4
review literature
4
literature report
4
report second
4
second prenatal
4
prenatal diagnosis
4
diagnosis familial
4
familial paracentric
4
inversion long
4

Similar Publications

Background: Chromosomal inversions are underappreciated causes of rare diseases given their detection, resolution, and clinical interpretation remain challenging. Heterozygous mutations in the MEIS2 gene cause an autosomal dominant syndrome characterized by intellectual disability, cleft palate, congenital heart defect, and facial dysmorphism at variable severity and penetrance.

Case Presentation: Herein, we report a Chinese girl with intellectual disability, developmental delay, and congenital heart defect, in whom G-banded karyotype analysis identified a de novo paracentric inversion 46,XX, inv(15)(q15q26.

View Article and Find Full Text PDF

Inversions are balanced structural variants that often remain undetected in genetic diagnostics. We present a female proband with a de novo Chromosome 15 paracentric inversion, disrupting MEIS2 and NUSAP1. The inversion was detected by short-read genome sequencing and confirmed with adaptive long-read sequencing.

View Article and Find Full Text PDF

Chromosomal inversions can preserve combinations of favorable alleles by suppressing recombination. Simultaneously, they reduce the effectiveness of purifying selection enabling deleterious alleles to accumulate. This study explores how areas of low recombination, including centromeric regions and chromosomal inversions, contribute to the accumulation of deleterious and favorable loci in 225 Mangifera indica genomes from the Australian Mango Breeding Program.

View Article and Find Full Text PDF

Background: Duchenne Muscular Dystrophy (DMD) is an X-linked disorder caused by mutations in the DMD gene, with large deletions being the most common type of mutation. Inversions involving the DMD gene are a less frequent cause of the disorder, largely because they often evade detection by standard diagnostic methods such as multiplex ligation probe amplification (MLPA) and whole exome sequencing (WES).

Case Presentation: Our research identified two intrachromosomal inversions involving the dystrophin gene in two unrelated families through Long-read sequencing (LRS).

View Article and Find Full Text PDF

Introduction: Neurodevelopmental disorders (NDDs) are diverse and can be explained by either genomic aberrations or single nucleotide variants. Most likely due to methodological approaches and/or disadvantages, the concurrence of both genetic events in a single patient has hardly been reported and even more rarely the pathogenic variant has been regarded as the cause of the phenotype when a chromosomal alteration is initially identified.

Case Presentation: Here, we describe a NDD patient with a 6p nonpathogenic paracentric inversion paternally transmitted and a de novo pathogenic variant in the GRIN2B gene.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!