We describe an operational, self-contained, fully autonomous Raman lidar system that has been developed for unattended, around-the-clock atmospheric profiling of water vapor, aerosols, and clouds. During a 1996 three-week intensive observational period, the system operated during all periods of good weather (339 out of 504 h), including one continuous five-day period. The system is based on a dual-field-of-view design that provides excellent daytime capability without sacrificing nighttime performance. It is fully computer automated and runs unattended following a simple, brief (~5-min) start-up period. We discuss the theory and design of the system and present detailed analyses of the derivation of water-vapor profiles from the lidar measurements.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1364/ao.37.004979 | DOI Listing |
Coherent heterodyne lidars are typically used for windspeed and attenuated backscattering measurements. The lack of molecular backscattering detection capability has limited the calibrated backscattering measurements until recent advances in coherent lidar technology. In this work, the simultaneous detection of aerosol and molecular backscattering is demonstrated with coherent heterodyne lidar, and the results are compared with a state-of-the-art Raman lidar PollyXT as a reference in a long-range for the first time.
View Article and Find Full Text PDFWe report a hyperspectral Raman imaging lidar system that can remotely detect and identify typical plastic species. The system is based on a frequency-doubled, Q-switched Nd:YAG laser operating at 532 nm and an imaging spectrograph equipped with a gated intensified CCD spectrometer. Stand-off detection of plastics is achieved at 6 m away with a relatively wide field of view of 1 × 150 mm, thus providing the groundwork for better solutions in monitoring marine plastic pollution.
View Article and Find Full Text PDFSensors (Basel)
November 2024
National Energy Technology Laboratory, 3610 Collins Ferry Road, Morgantown, WV 26505, USA.
Localized operating conditions inside boilers, heat recovery steam generators, or other large thermal systems have a huge impact on the efficiency, environmental performance, and lifetime of components. It is extremely difficult to measure species accurately within these systems due to the high temperatures and harsh environments, locally oxidizing or reducing atmospheres, ash, other particulates, and other damaging chemical species. Physical probes quickly suffer damage and are rendered nonfunctional.
View Article and Find Full Text PDFSci Rep
September 2024
Anhui Institute of Optics and Fine Mechanics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, China.
Due to the fact that the vibration and pure rotational Raman signals collected by the temperature and humidity profile lidar were 3-4 orders of magnitude weaker than the Mie scattering signal, they were susceptible to electronic and white noise interference, which seriously affected the system signal-to-noise ratio. In this paper, an improved VMD-WT filtering method was adopted to extract effective signals and denoise. The processing outcome of several filtering algorithms was evaluated, and noisy signals were simulated to confirm the algorithm's efficacy.
View Article and Find Full Text PDFThis article presents an experimental demonstration of a spectroscopic method based on the dispersion of the scattering spectrum from laser-illuminated liquid water collected through a rubidium atomic vapor prism cell. Resonant absorption at 780 nm suppresses Mie/Rayleigh scattering and the steep gradients in refractive index near the 780 nm absorption lines separate Brillouin scattering from Raman scattering in liquid water. The opposing spatial displacements of the Stokes and Anti-Stokes shifted Brillouin peaks yield a measurement of their spectral shifts and thus the temperature or salinity of the water.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!