Sum-frequency mixing of two cw single-mode Nd:YAG lasers in a doubly resonant congruent lithium niobate resonator generated two TEM(00) beams of single-frequency 589-nm radiation. The primary beam had a power of 400 mW and the secondary beam of approximately 15 mW by use of 320 mW of 1319-nm and 660 mW of 1064-nm Nd:YAG radiation incident on the lithium niobate resonator. This corresponds to an optical power conversion efficiency of more than 40%.

Download full-text PDF

Source
http://dx.doi.org/10.1364/ao.37.004891DOI Listing

Publication Analysis

Top Keywords

lithium niobate
12
niobate resonator
12
doubly resonant
8
sum-frequency mixing
8
continuous-wave all-solid-state
4
all-solid-state single-frequency
4
single-frequency 400-mw
4
400-mw source
4
source 589
4
589 based
4

Similar Publications

The integrated frequency comb generator based on Kerr parametric oscillation has led to chip-scale, gigahertz-spaced combs with new applications spanning hyperscale telecommunications, low-noise microwave synthesis, light detection and ranging, and astrophysical spectrometer calibration. Recent progress in lithium niobate (LiNbO) photonic integrated circuits (PICs) has resulted in chip-scale, electro-optic (EO) frequency combs, offering precise comb-line positioning and simple operation without relying on the formation of dissipative Kerr solitons. However, current integrated EO combs face limited spectral coverage due to the large microwave power required to drive the non-resonant capacitive electrodes and the strong intrinsic birefringence of LiNbO.

View Article and Find Full Text PDF

Efficient optical parametric amplification in the thin film lithium niobate waveguides.

Sci Rep

January 2025

Guangdong Provincial Key Laboratory of Nanophotonic Functional Materials and Devices, South China Normal University, Guangzhou, 510631, People's Republic of China.

Prominent platforms based on thin-film lithium niobate (TFLN) are superior integrated-photonics platforms for efficient optical parametric amplification (OPA), however, previously few studies have been systematically reported the gain-boosting performance of TFLN waveguides compared to bulk LN waveguides. Here, we optimize two TFLN waveguides with dispersion engineering for high-efficiency and ultra-broadband gain of OPA, then report comparative results about the efficient ultra-broadband OPA of TFLN waveguides in the case of low loss, optimized waveguide length and pump power. Note that the efficient ultra-broadband OPA of TFLN waveguides is represented by the peak gain (71.

View Article and Find Full Text PDF

Correlated photon-pair sources are key components for quantum computing, networking, synchronization, and sensing applications. Integrated photonics has enabled chip-scale sources using nonlinear processes, producing high-rate time-energy and polarization entanglement at telecom wavelengths with sub-100 microwatt pump power. Many quantum systems operate in the visible or near-infrared ranges, necessitating visible-telecom entangled-pair sources for connecting remote systems via entanglement swapping and teleportation.

View Article and Find Full Text PDF

Low-frequency noise in detection systems significantly affects the performance of ultrasensitive and ultracompact spin-exchange relaxation-free atomic magnetometers. High frequency modulation detection helps effectively suppress the 1/ noise and enhance the signal-to-noise ratio, but conventional modulators are bulky and restrict the development of integrated atomic magnetometer modulation-detection systems. Resonant metasurface-based thin-film lithium-niobate (TFLN) active optics can modulate free-space light within a compact configuration.

View Article and Find Full Text PDF

Lithium niobate (LiNbO) has shown great potential for applications in nonlinear metasurfaces, thanks to its large second-order nonlinear coefficients and high integration capabilities. Optical resonances play a crucial role in further enhancing the nonlinear optical responses of LiNbO metasurfaces (LNMS). In this study, both numerically and experimentally, we designed and fabricated a metasurface structure that supports toroidal dipole (TD) resonance to enhance second-harmonic generation (SHG).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!