Filter banks play a major role in multirate signal processing where these have been successfully used in a variety of applications. In the past, filter banks have been developed within the framework of linear filters. It is well known, however, that linear filters may have less than satisfactory performance whenever the underlying processes are non-Gaussian. We introduce the nonlinear class of order statistic (OS) filter banks that exploit the spectral characteristics of the input signal as well as its rank-ordering structure. The attained subband signals provide frequency and rank information in a localized time interval. OS filter banks can lead to significant gains over linear filter banks, particularly when the input signals contain abrupt changes and details, as is common with image and video signals. OS filter banks are formed using traditional linear filter banks as fundamental building blocks. It is shown that OS filter banks subsume linear filter banks and that the latter are obtained by simple linear transformations of the former. To illustrate the properties of OS filter banks, we develop simulations showing that the learning characteristics of the LMS algorithm, which are used to optimize the weight taps of OS filters, can be significantly improved by performing the adaptation in the OS subband domain.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1109/83.503902 | DOI Listing |
Curr Issues Mol Biol
December 2024
College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
Cogn Neurodyn
December 2025
Department of Electrical and Electronics Engineering, Jazan, 45142 Jazan Saudi Arabia.
Alzheimer's disease (AD) is a chronic disability that occurs due to the loss of neurons. The traditional methods to detect AD involve questionnaires and expensive neuro-imaging tests, which are time-consuming, subjective, and inconvenient to the target population. To overcome these limitations, Electroencephalogram (EEG) based methods have been developed to classify AD patients from normal controlled (NC) and mild cognitive impairment (MCI) subjects.
View Article and Find Full Text PDFSci Rep
December 2024
School of Civil Engineering, Chongqing Three Gorges University, Chongqing, 404100, China.
Runoff fluctuations under the influence of climate change and human activities present a significant challenge and valuable application in constructing high-accuracy runoff prediction models. This study aims to address this challenge by taking the Wanzhou station in the Three Gorges Reservoir area as a case study to optimize various prediction models. The study first selects artificial neural network (ANN) and support vector machine (SVM) as the base models.
View Article and Find Full Text PDFMol Genet Genomics
December 2024
Department of Health Promotion, Maternal and Child Care, Internal Medicine and Medical Specialities "G. D'Alessandro" (PROMISE), University of Palermo, Via del Vespro 129, Palermo, 90127, Italy.
Data Brief
December 2024
Institute of Computing, Federal University of Amazonas, Av. Gen. Rodrigo Octávio, 6200 Setor Norte do Campus Universitário - Coroado, Manaus, AM, Brazil.
The demand for mobile coverage with adequate signal quality has triggered criticism due to the maturity of the Internet's diffusion in today's society. However, with the deployment of 5G networks, even 5G NSA by 4G LTE, the complexity of the operating environment of mobile networks has increased. To evaluate the behavior of mobile networks in terms of signal quality and other important metrics for mobile telephony, we developed a dataset consisting of 33 radio parameters that can collect up to 736,974 records generated daily by smartphones and tablets.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!