A DNA-binding site selection and enrichment procedure revealed a sequence-specific DNA-binding activity selectively associated with glutathione S-transferase-retinoblastoma protein chimeras (GST-RB) that had been incubated with a human cell extract. Appropriate mutant forms of GST-RB, incubated in equivalent extracts, did not associate with this specific DNA-binding activity, and a peptide replica of the HPV E7 RB-binding segment selectively inhibited the association of GST-RB with the sequence-specific DNA-binding protein(s). Sequence analysis of oligonucleotides with high affinity for GST-RB complexes, as well as the results of competition binding studies, strongly suggest that RB can associate specifically with the transcription factor E2F or with a protein having closely related DNA-binding properties.

Download full-text PDF

Source
http://dx.doi.org/10.1016/0092-8674(91)90559-hDOI Listing

Publication Analysis

Top Keywords

sequence-specific dna-binding
12
dna-binding activity
8
gst-rb incubated
8
dna-binding
6
t/e1a-binding domain
4
domain retinoblastoma
4
retinoblastoma product
4
product interact
4
interact selectively
4
selectively sequence-specific
4

Similar Publications

Epstein-Barr nuclear antigen 1 (EBNA1), a sequence-specific DNA binding protein of Epstein-Barr virus (EBV), is essential for viral genome replication and maintenance and is therefore an attractive target for the therapeutic intervention of EBV-associated cancers. Several EBNA1-specific inhibitors have demonstrated the ability to block EBNA1 function in vitro, but practical delivery strategies for these inhibitors in vivo are still lacking. Here, we report an intelligent hierarchical targeting theranostic nanosystem (denoted as mZGOCS@MnO-P5) that integrates an azide (N3) terminal dual-targeting peptide (N3-P5), a tumor microenvironment-responsive degradable MnO nanosheet, and a mesoporous ZnGaO:Cr, Sn near-infrared persistent luminescence (NIR-PL) nanosphere (mZGOCS).

View Article and Find Full Text PDF

Investigation of the impact of R273H and R273C mutations on the DNA binding domain of P53 protein through molecular dynamic simulation.

J Biomol Struct Dyn

February 2025

Laboratory of Integrative Genomics, Department of Integrative Biology, School of Bio Sciences and Technology, Vellore Institute of Technology (VIT), Vellore, India.

The P53 protein, a cancer-associated transcriptional factor and tumor suppressor, houses a Zn ion in its DNA-binding domain (DBD), essential for sequence-specific DNA binding. However, common mutations at position 273, specifically from Arginine to Histidine and Cysteine, lead to a loss of function as a tumor suppressor, also called DNA contact mutations. The mutant (MT) P53 structure cannot stabilize DNA due to inadequate interaction.

View Article and Find Full Text PDF

Nuclear receptor subfamily 4 group A member 3 (NR4A3) is a member of the orphan nuclear receptor superfamily, and exhibits transcription factor activity by binding to sequence-specific DNA. Considering that the specific mechanism by which NR4A3 regulates gene transcription in HCC (hepatocellular carcinoma) has not yet been elucidated, our study aimed to explore the transcriptional role of NR4A3 in regulating the target gene CDKN2AIP (CDKN2A interacting protein), which will suppress the development of HCC. Our data show that NR4A3 is downregulated in human HCC tissues, and that low expression of NR4A3 is correlated with poor prognosis, indicating that NR4A3 could act as a tumor suppressor gene in HCC.

View Article and Find Full Text PDF
Article Synopsis
  • Whole genome bisulfite sequencing (WGBS) has been the main method for analyzing DNA methylation but has issues with technical biases that can lead to inaccurate results, especially in cytosine-rich areas.
  • A new technique called EM-seq is emerging to replace WGBS, using a two-step enzymatic conversion process that avoids the damaging effects of bisulfite conversion.
  • EM-seq offers advantages like being degradation-free, requiring less DNA, achieving higher yields, ensuring less variation, and providing accurate and uniform results across a wider range of methylation sites.
View Article and Find Full Text PDF

Functional characteristics and computational model of abundant hyperactive loci in the human genome.

Elife

November 2024

National Institute for Biotechnology and Information, National Library of Medicine, National Institutes of Health, Bethesda, United States.

Enhancers and promoters are classically considered to be bound by a small set of transcription factors (TFs) in a sequence-specific manner. This assumption has come under increasing skepticism as the datasets of ChIP-seq assays of TFs have expanded. In particular, high-occupancy target (HOT) loci attract hundreds of TFs with often no detectable correlation between ChIP-seq peaks and DNA-binding motif presence.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!